

DISCARICA DI MATTIE

1) PREMESSA

Con autorizzazione41-91886/1999 del 26/05/1999 la Giunta Provinciale di Torino autorizzava la costruzione del terzo lotto della discarica per rifiuti urbani di Mattie.

Con provvedimento 134-402873/2005 del 23/09/2005 la Provincia di Torino approvava il piano di adeguamento al D.Lgs. 36/2003 della discarica per rifiuti non pericolosi di Mattie, rinnovandone peraltro l'autorizzazione fino al 16/10/2008.

Nell'allegato E del suddetto documento vengono calendarizzati molti monitoraggi ambientali e viene richiesta una relazione semestrale sul funzionamento dell'impianto.

Con provvedimento 81-24161/2008 del 31/03/2008 la Provincia di Torino rilasciava l'Autorizzazione Integrata Ambientale. Il suddetto documento, nell'allegato F prevedeva la realizzazione della presente relazione.

Con provvedimento 73-9453/2014 del 26/03/2014 la Provincia di Torino rinnovava l'Autorizzazione Integrata Ambientale 26/03/2019 mantenendo le prescrizioni già in essere relativamente ai monitoraggi ed alle relazioni quadrimestrali, semestrali ed annuali.

Con provvedimento 381-29754/2018 del 14/12/2018 la Città Metropolitana di Torino prendeva atto della chiusura ed il conseguente inizio della fase di gestione operativa.

Con nota 3253 del 11/07/2017 ACSEL ha trasmesso copia dell'adeguamento del Piano di Sorveglianza e Controllo aggiornato.

Con il presente documento ACSEL ottempera a quanto prescritto con determina 381-29754/2018 del 14/12/2018 – Sezione 2 – relazione Semestrale.

2) RELAZIONE FASE POST-OPERATIVA (Rif det. 381-29754/2018 del 14/12/2018 - Sezione 2)

1.a) Analisi acque di ruscellamento

Si allega copia delle analisi effettuate dal laboratorio Neosis sulle acque meteoriche campionate dai 4 punti prestabiliti nel mese di Maggio 2019. (Allegato 1)

2.a) Analisi del Percolato

Si allega copia delle analisi effettuate dal laboratorio Neosis sul percolato campionato dai 5 settori nel mese di Maggio 2019. (Allegato 2)

2.b) Quantitativo Percolato

Il percolato viene trasferito mediante autobotti presso i depuratori Acque Novara e Cossato. Il riassunto sulla produzione è contenuto nelle tabelle predisposte dall'Ufficio Tecnico Acsel SpA. (Allegato 3) L'andamento dei livelli di percolato misurati all'interno dei singoli settori è contenuto nella tabella predisposta. (Allegato 4)

3.a) Analisi Gas Sistema di Monitoraggio del Sottosuolo

Si allega copia delle tabelle relative alla misura dell'aria interstiziale del suolo non saturo predisposta dall'Ufficio Tecnico Acsel SpA. (Allegato 5)

3.c) Analisi del Gas presso ogni testa Pozzo

Si allega copia dei tabulati relativi al campionamento presso ogni singola testa pozzo e stazione di regolazione predisposti dal concessionario del biogas ASJA Ambiente. (Allegato 6)

3.d) Analisi qualitativa del gas di discarica

Si allega copia della relazione semestrale predisposta dal concessionario del biogas ASJA Ambiente la quale contiene i referti analitici relativi alla qualità del gas. (Allegato 7)

4) Analisi qualità dell'aria

Si allega copia delle analisi effettuate dal laboratorio Neosis sulla qualità dell'aria campionata nel mese di Maggio 2019 dai 2 punti (monte/valle) relativamente ai parametri prescritti. (Allegato 8)

5) Dati Meteoclimatici

Si allega copia degli indicatori meteoclimatici desunti dalla centralina meteorologica presente presso il sito della discarica. (Allegato 9)

Bilancio idrologico discarica

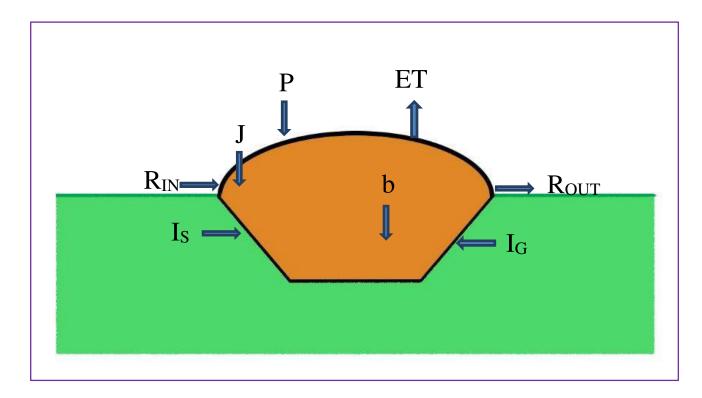
Al fine di ottemperare a quanto richiesto dalla Sezione 2 – Relazione semestrale – punto 5 del Provvedimento 381-29754/2018 del 14/12/2018 si è provveduto ad eseguire un'elaborazione finalizzata a calcolare un bilancio idrologico della discarica.

Partendo dai dati disponibili principali (indicatori meteoclimatici quali precipitazioni, umidità, temperatura ed evapotraspirazione) e dai dati misurati quali superfici, volumetrie e volume di percolato prodotto si sono applicati diversi algoritmi per giungere ad una modellizzazione della produzione di percolato della discarica.

Metodologia di calcolo

Il ciclo idrologico può essere descritto in termini sistematici analizzando i sistematici analizzando i flussi in ingresso flussi in ingresso, quelli, quelli in uscita, le trasformazioni e le varie forme di forme di immagazzinamento.

L'equazione generale che esprime il principio di principio di conservazione della massa, tramite il quale, è possibile impostare un "bilancio idrologico bilancio idrologico" applicabile ad ogni volume di controllo, è la seguente:


Essa sostiene che "la variazione nel tempo della massa d'acqua M, corrispondente alla fase assegnata è pari alla differenza fra il flusso entrante (input, I) e quello uscente (output, O)"

Per la stima della produzione di percolato di un sito di discarica, occorre individuare una serie di elementi specifici pertinenti al sito su cui si deve effettuare lo studio.

- Dati meteo (precipitazioni, temperature, umidità, evaporazione, etc);
- Aspetti delle superfici interessate (tipologia di copertura, pendenza, permeabilità, etc);
- Caratteristiche dei rifiuti abbancati (tipologia, età, umidità, compattazione, etc);
- Caratteristiche dell'impianto e del sito (impermeabilizzazione, geologia del sito, etc)

Stima Produzione Percolato

Il calcolo teorico della produzione di percolato di una discarica passa attraverso la valutazione dei molteplici parametri che contribuiscono più o meno significativamente alla sua formazione.

L'espressione che esprime il calcolo teorico è la seguente:

$$L = P - R_{OUT} + R_{IN} - ET + I + I_S + I_G + (\Delta U_S - \Delta U_W) \pm b$$

in cui:

L= Volume del percolato prodotto;

P= Precipitazioni;

Rout= Ruscellamento verso l'esterno;

R_{IN}= Ruscellamento verso l'interno;

ET= Evapotraspirazione;

J= Irrigazione o ricircolo percolato;

Is= Infiltrazione superficiale;

I_G= Infiltrazione sotterranea;

ΔU_S= Variazione contenuto acqua copertura;

 ΔU_W = Variazione contenuto acqua rifiuti;

b= Produzione/Consumo acqua dovuto a reazioni di biodegradazione.

Analisi dei principali parametri

- Precipitazioni

Il contributo meteorico rappresenta sempre, per quanto riguarda gli apporti, la voce più importante del bilancio idrologico.

Come in tutti i fenomeni di infiltrazione le piogge che danno i maggiori contributi sono quelle di lunga durata e debole intensità perché massimizzano l'assorbimento da parte del terreno e minimizzano quindi il ruscellamento.

Per il calcolo della produzione di percolato da eseguire mediante il bilancio idrologico, non risulta ne semplice ne opportuno selezionare solo questo tipo di piogge, ma si considerano in genere le precipitazioni complessive depurandole poi del ruscellamento superficiale.

In particolare per la valutazione del contributo dovuto alle precipitazioni si fa riferimento ai valori medi mensili ottenuti dall'analisi degli ultimi anni delle precipitazioni registrate dalla centralina metereologica dell'impianto (oppure della stazione meteo ARPA della Val Clarea laddove quella dell'impianto sia risultata guasta).

Ruscellamento verso l'esterno

Il ruscellamento superficiale delle acque piovane è influenzato essenzialmente dalla morfologia del terreno, dalle caratteristiche della copertura oltre ovviamente dalla intensità e durata della precipitazione.

Il tipo e le caratteristiche di permeabilità del materiale di copertura impiegato, la copertura vegetale presente, o la tipologia dei drenaggi delle acque superficiali, possono modificare notevolmente la quantità d'acqua meteorica che si infiltra e percola nel corpo della discarica. Data la difficoltà nella valutazione esatta di tale contributo per effetto dell'incertezza sulle numerose variabili che lo influenzano, si utilizzano metodi semplificati come il metodo razionale, nel quale il contributo del ruscellamento R viene considerato proporzionale alla precipitazione media mensile attraverso opportuni coefficienti di deflusso, funzioni della tipologia del terreno e della relativa pendenza.

L'espressione risulta quindi essere:

$$R_{OUT} = c \cdot P$$
 oppure $R_{IN} = c \cdot P$

In cui c rappresenta il coefficiente e P le precipitazioni.

Conortura	Pendenze					
Copertura	> 2 %	2 - 10 %	> 10 %			
Pendio inerbito	0.25	0.30	0.30			
Terra liscia	0.60	0.65	0.70			
Pascolo	0.25	0.30	0.35			
Coltivo impermeabile	0.50	0.55	0.60			
Coltivo permeabile	0.25	0.30	0.35			

- Evapotraspirazione

E' noto dall'idrologia che la copertura vegetale di un suolo permette un rilascio di quantità d'acqua in atmosfera attraverso il fenomeno dell'evaporazione e

dell'evapotraspirazione. Questa quantità è assai superiore a quella che potrebbe evaporare dal suolo spoglio, cioè in assenza di vegetazione.

Nel caso della discarica si possono presentare, nel corso dell'esercizio, situazioni che portano ad avere contributi diversi. Occorre pertanto distinguere tra discariche ancora in esercizio, con una superficie a contatto con l'atmosfera costituita dal terreno di copertura intermedio, senza vegetazione, e discariche già completate, dotate quindi di una copertura finale inerbita ed eventualmente piantumata.

Nel caso di discarica dotata di uno strato di terreno agrario piantumato, il termine di evapotraspirazione può essere valutato attraverso numerose formule empiriche o semiempiriche; tuttavia il metodo che meglio sembra calcolare la reale evapotraspirazione potenziale è quello elaborato da Thorntwaite, con l'applicazione dei coefficienti correttivi per le diverse latitudini.

Occorre distinguere i periodi umidi in cui le precipitazioni, epurate dal ruscellamento superficiale consentono all'evaporazione effettiva il raggiungimento del valore massimo (evapotraspirazione potenziale), dai periodi secchi in cui viceversa l'evapotraspirazione effettiva non riesce ad eguagliare la potenziale.

A tal fine viene inizialmente valutata l'evapotraspirazione potenziale (considerando tutti i mesi come umidi) mediante la relazione:

$$ETP_{J} = 16 * L_{I} (10/l * T_{J})^{a}$$

In cui:

ETP_I= altezza di evapotraspirazione mensile del mese;

l= è l'indice termico annuale ottenuto dalla somma dei coefficienti mensili di eliofania astronomica alla latitudine in esame (45°).

T_J= temperatura media del mese;

a=6,75 . 10-7 . IT 3 - 7,71 . 10-5 . IT 2 + 1,792 . 10-2 . IT + 0,49239;

L'applicazione della formula di Thorntwaite conduce al calcolo dei valori della evapotraspirazione potenziale per ogni mese dell'anno. La differenza tra i valori mensili della precipitazione efficace (precipitazione epurata dalla componente di ruscellamento superficiale) e l'evapotraspirazione potenziale (Pi-Ri-ETPi) permette di individuare la stagione secca e quella umida durante l'anno.

- Irrigazione o ricircolo del percolato

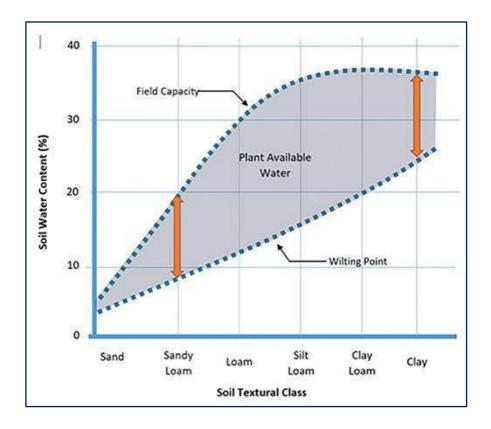
Il processo di ricircolo del percolato potrebbe incidere nella stima del calcolo. Nel caso della discarica di Mattie tuttavia il processo di ricircolo non è ancora partito, pertanto lo stesso non produce effetti nella stima.

- Acque di infiltrazione da corpi idrici superficiali

La sistemazione finale dei tre lotti, e la morfologia esterna al perimetro della discarica pare escludere infiltrazioni da evidenti corpi idrici superficiali. Tale apporto nel calcolo non incide.

- Acque di infiltrazione da falde

Il sito non ha mai mostrato la presenza di acquiferi. A causa di tale situazione nel calcolo non si è quindi tenuto conto delle suddette infiltrazioni.


Il processo di ricircolo del percolato potrebbe incidere nella stima del calcolo. Nel caso della discarica di Mattie tuttavia il processo di ricircolo non è ancora partito, pertanto lo stesso non

Variazioni del contenuto d'acqua

La stima della capacità di campo della copertura è stata definita utilizzando come riferimento il grafico redatto dall'USDA (United States Department of Agriculture)

La variazione della capacità di accumulo del terreno (ΔU_S) è data dalla differenza tra le capacità di accumulo del mese corrente e di quello precedente.

Il suddetto parametro tuttavia incide poco se paragonato ai precedenti.

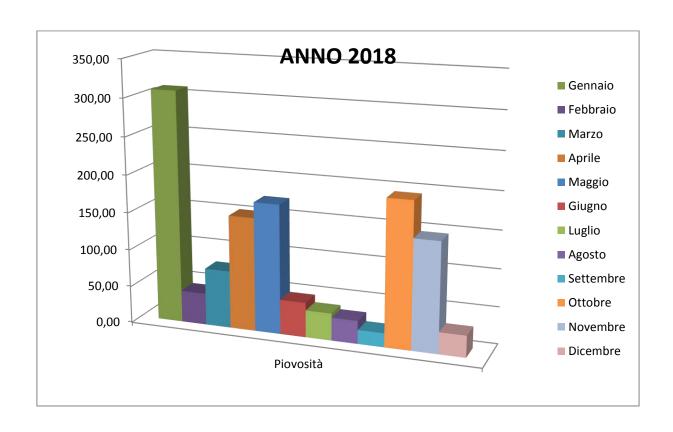
Variazioni del contenuto d'acqua nei rifiuti

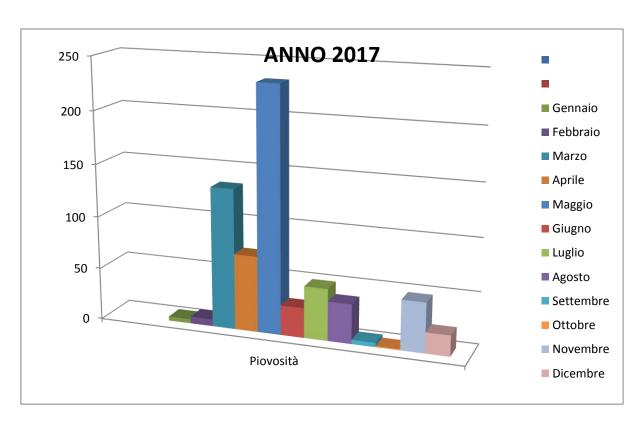
In favore di sicurezza si assume che l'ammasso di rifiuti, a copertura finale ultimata, si trovi già a capacità di campo e pertanto non sia in grado di assorbire acqua al suo interno che verrebbe altrimenti sottratta alla formazione di percolato.

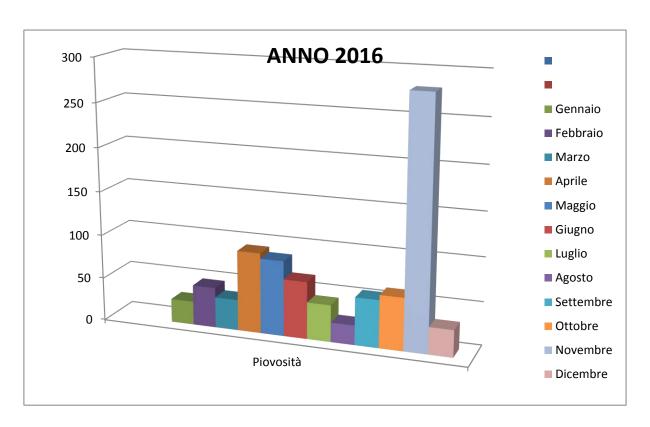
Anche tale termine è comunque trascurabile rispetto agli altri presenti nel bilancio

Calcolo Produzione

La stima della produzione è stata eseguita rispettivamente per i tre lotti della discarica di Mattie:


- Lotto 1: lotto su cui si è smaltito dal 1988 al 1994 dotato di capping;
- Lotto 2: lotto su cui si è smaltito dal 1994 al 2000 dotato di capping;
- Lotto 3: lotto su cui si è smaltito dal 2000 al 2015- dotato di capping dal 2017


Per il calcolo si sono utilizzati i dati metereologici relativi agli ultimi tre anni. Laddove, a causa di temporanei malfunzionamenti della centralina meteo di Mattie, si sono utilizzati i valori estrapolati dalla centralina meteo ARPA situata in Val Clarea, interpolati per il sito di Mattie.


Tabella precipitazioni anni 2018 - 2017 - 2016 (alcuni dati interpolati)

Mese	Piovosità 2018	Piovosità 2017	Piovosità 2016
Gennaio	309,00	3,96	27,34
Febbraio	43,20	6,66	46,69
Marzo	77,40	133,92	35,69
Aprile	152,20	72,72	92,50
Maggio	173,00	232,2	86,46
Giugno	47,00	28,8	65,87
Luglio	36,80	49,86	42,61
Agosto	31,20	37,98	22,73
Settembre	19,00	4,14	55,04
Ottobre	194,40	1,08	60,90
Novembre	146,60	47,88	280,52
Dicembre	29,40	19,98	31,25
Totali	1.259,20	639,18	847,60

Grafici precipitazioni anni 2018 - 2017 - 2016 (alcuni dati interpolati)

La stima sulla produzione del percolato risente di moltissimi aspetti locali. Nell'applicazione del modello è emersa la necessità di considerare i lotti 1 e 2 come unico bacino. La sovrapposizione dei due lotti senza evidenti limiti superficiali fra i lotti, ed il fondo vasca probabilmente interconnesso obbliga di fatto a considerare il bacino come unico.

Anche l'iniziale approccio separato portava ad ottenere risultati plausibili solo se sommati fra i due lotti.

Al fine di valutare in modo più completo l'analisi iniziale sulla produzione del percolato si è ritenuto utile provare a considerare gli ultimi tre anni.

Applicando quindi tutti i parametri del sito al modello, per i rispettivi anni otteniamo:

2019		
Piovosità	525,4	mm
Produzione percolato semestrale lotti 1 e 2	0,039	mc/mq
Produzione percolato annuale lotti 1 e 2	0,078	mc/mq
Stima produzione percolato semestrale lotti 1 e 2	1131	mc
Produzione reale semestrale lotti 1 e 2	1.388	mc
Stima produzione percolato annuale lotti 1 e 2	0	mc
Produzione reale annuale lotti 1 e 2	0	mc
Produzione percolato semestrale lotto 3	0,028	mc/mq
Produzione percolato annuale lotto 3	0,056	mc/mq
Stima produzione percolato semestrale lotto 3	850	mc
Produzione percolato semestrale lotto 3	809	mc
Stima produzione percolato annuale lotto 3	0	mc
Produzione percolato annuale lotto 3	0	mc

Il primo semestre 2019 mostra una stima di produzione pari a 1131 mc per i lotti 1 e 2 contro un reale emungimento di 1.388 mc. Il lotto 3 riporta una stima pari a 850 mc contro un emungimento di 809 mc. In questo caso, la differenza in difetto è molto limitata e quindi certamente non rappresenta indice di rischio.

2018		
Piovosità	1259,2	mm
Produzione percolato semestrale lotti 1 e 2	0,05	mc/mq
Produzione percolato annuale lotti 1 e 2	0,1	mc/mq
Stima produzione percolato semestrale lotti 1 e 2	0	mc
Produzione reale semestrale lotti 1 e 2	0	mc
Stima produzione percolato annuale lotti 1 e 2	2.900	mc
Produzione reale annuale lotti 1 e 2	3.168	mc
Produzione percolato semestrale lotto 3	0,039	mc/mq
Produzione percolato annuale lotto 3	0,078	mc/mq
Stima produzione percolato semestrale lotto 3	0	mc
Produzione percolato semestrale lotto 3	0	mc
Stima produzione percolato annuale lotto 3	2.368	mc
Produzione percolato annuale lotto 3	2.381	mc

La stima globale per l'anno 2018 mostra invece per i lotti 1 o 2 una stima pari a 2.378 mc a fronte di una produzione reale di 2.245 mc. Il lotto 3 riporta una stima di 1.822 contro il valore reale di 2.139 mc.

2017		
Piovosità	639,18	mm
Produzione percolato semestrale lotti 1 e 2	0,041	mc/mq
Produzione percolato annuale lotti 1 e 2	0,082	mc/mq
Stima produzione percolato semestrale lotti 1 e 2	0	mc
Produzione reale semestrale lotti 1 e 2	0	mc
Stima produzione percolato annuale lotti 1 e 2	2.378	mc
Produzione reale annuale lotti 1 e 2	2.245	mc
Produzione percolato semestrale lotto 3	0,03	mc/mq
Produzione percolato annuale lotto 3	0,06	mc/mq
Stima produzione percolato semestrale lotto 3	0	mc
Produzione percolato semestrale lotto 3	0	mc
Stima produzione percolato annuale lotto 3	1.822	mc
Produzione percolato annuale lotto 3	2.139	mc

Nel 2017 la situazione mostra che per i lotti 1 e 2 la stima sia di 2.378 mc contro una produzione reale di 2.245 mc. Il lotto 3 ha una stima di 1.822 mc contro un valore reale di 2.139.

Nel complesso le stime appaiono abbastanza vicine alle condizioni reali. Nei vari anni non pare che si possano evidenziare situazioni di criticità.

6) Rilievo Topografico

Si allega copia del rilievo topografico comprensivo di sezioni redatto dallo studio geom. Roberto Spinoso nel mese di Febbraio 2019. (Allegato 10)

6) Relazione reimmissione controllata percolato

Non si allega il suddetto documento in quanto l'attività non risulta ancora attivata.

RAPPORTO DI PROVA n. AGR190523C-001

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 2 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ACQUA REFLUA

Id campione cliente: ACQUA METEORICA CANALINE PUNTO 1 EST LATO ROCCIA

Id campione interno: AGR190523C-001

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
рН	pН	7,3±0,2	5,5-9,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1
Solidi sospesi totali	mg/l	<10	80	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1
COD Domanda chimica di ossigeno (come O2)	mg/l O2	23,5±4,3	100	ISO 15705:2002 (escluso p.to 10.3)	27-mag-19	L1
Cloruri	mg/l	12,9±2,1	1200	UNI EN ISO 10304-1:2009	28-mag-19	L1
Azoto ammoniacale (come NH4)	mg/l	<0,5	15	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1
Azoto nitrico (come N)	mg/l	1,4±0,3	20	UNI EN ISO 10304-1:2009	28-mag-19	L1
Indice di idrocarburi	mg/l	<0,5	5 (hc)	UNI EN ISO 9377-2:2002	31-mag-19	L1
Cromo totale	mg/l	<0,003	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Ferro	mg/l	0,07±0,02	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Manganese	mg/l	0,004±0,001	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Nichel	mg/l	0,006±0,002	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Piombo	mg/l	<0,003	0,2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede		
Rame	mg/l	0,016±0,003	0,1	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1		

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

Opinioni e interpretazioni - non oggetto dell'accreditamento ACCREDIA:

(hc)=La denominazione Indice di idrocarburi riportata nel presente rapporto di prova è da considerarsi equivalente alla dicitura Idrocarburi totali citata nel D.Lgs.152/06, Parte III, All.5, Tab.3.

Dichiarazione di conformità:

Limitatamente ai parametri determinati si può affermare che il campione in esame è conforme a quanto previsto dal D.Lgs.152/06, Parte III, All.5, Tab.3 per gli scarichi in acqua superficiale.

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

RAPPORTO DI PROVA n. AGR190523C-002

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 2 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ACQUA REFLUA

Id campione cliente: ACQUA METEORICA CANALINE PUNTO 1 EST LATO STRADA STERRATA

Id campione interno: AGR190523C-002

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

	Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede				
рН	pН	7,4±0,2	5,5-9,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1				
Solidi sospesi totali	mg/l	<10	80	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1				
COD Domanda chimica di ossigeno (come O2)	mg/l O2	<15	100	ISO 15705:2002 (escluso p.to 10.3)	27-mag-19	L1				
Cloruri	mg/l	6±1	1200	UNI EN ISO 10304-1:2009	28-mag-19	L1				
Azoto ammoniacale (come NH4)	mg/l	<0,5	15	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1				
Azoto nitrico (come N)	mg/l	1,1±0,2	20	UNI EN ISO 10304-1:2009	28-mag-19	L1				
Indice di idrocarburi	mg/l	<0,5	5 (hc)	UNI EN ISO 9377-2:2002	31-mag-19	L1				
Cromo totale	mg/l	<0,003	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Ferro	mg/l	0,10±0,02	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Manganese	mg/l	0,006±0,001	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Nichel	mg/l	0,003±0,001	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Piombo	mg/l	<0,003	0,2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede		
Rame	mg/l	0,019±0,003	0,1	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1		

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

Opinioni e interpretazioni - non oggetto dell'accreditamento ACCREDIA:

(hc)=La denominazione Indice di idrocarburi riportata nel presente rapporto di prova è da considerarsi equivalente alla dicitura Idrocarburi totali citata nel D.Lgs.152/06, Parte III, All.5, Tab.3.

Dichiarazione di conformità:

Limitatamente ai parametri determinati si può affermare che il campione in esame è conforme a quanto previsto dal D.Lgs.152/06, Parte III, All.5, Tab.3 per gli scarichi in acqua superficiale.

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

RAPPORTO DI PROVA n. AGR190523C-003

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 2 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ACQUA REFLUA

Id campione cliente: ACQUA METEORICA CANALINE PUNTO 2 VASCA PRIMA PIOGGIA

Id campione interno: AGR190523C-003

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede			
рН	pН	7,5±0,2	5,5-9,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1			
Solidi sospesi totali	mg/l	<10	80	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1			
COD Domanda chimica di ossigeno (come O2)	mg/l O2	<15	100	ISO 15705:2002 (escluso p.to 10.3)	27-mag-19	L1			
Cloruri	mg/l	17,7±2,8	1200	UNI EN ISO 10304-1:2009	28-mag-19	L1			
Azoto ammoniacale (come NH4)	mg/l	<0,5	15	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1			
Azoto nitrico (come N)	mg/l	0,7±0,2	20	UNI EN ISO 10304-1:2009	28-mag-19	L1			
Indice di idrocarburi	mg/l	<0,5	5 (hc)	UNI EN ISO 9377-2:2002	31-mag-19	L1			
Cromo totale	mg/l	<0,003	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Ferro	mg/l	0,07±0,02	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Manganese	mg/l	0,007±0,002	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Nichel	mg/l	0,004±0,001	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Piombo	mg/l	<0,003	0,2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede		
Rame	mg/l	0,014±0,003	0,1	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1		

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

Opinioni e interpretazioni - non oggetto dell'accreditamento ACCREDIA:

(hc)=La denominazione Indice di idrocarburi riportata nel presente rapporto di prova è da considerarsi equivalente alla dicitura Idrocarburi totali citata nel D.Lgs.152/06, Parte III, All.5, Tab.3.

Dichiarazione di conformità:

Limitatamente ai parametri determinati si può affermare che il campione in esame è conforme a quanto previsto dal D.Lgs.152/06, Parte III, All.5, Tab.3 per gli scarichi in acqua superficiale.

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

RAPPORTO DI PROVA n. AGR190523C-004

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 2 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ACQUA REFLUA

Id campione cliente: ACQUA METEORICA CANALINE PUNTO 3 NORD

Id campione interno: AGR190523C-004

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

	Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede				
рН	pН	7,5±0,2	5,5-9,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1				
Solidi sospesi totali	mg/l	<10	80	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1				
COD Domanda chimica di ossigeno (come O2)	mg/l O2	<15	100	ISO 15705:2002 (escluso p.to 10.3)	27-mag-19	L1				
Cloruri	mg/l	6±1	1200	UNI EN ISO 10304-1:2009	28-mag-19	L1				
Azoto ammoniacale (come NH4)	mg/l	<0,5	15	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1				
Azoto nitrico (come N)	mg/l	<0,5	20	UNI EN ISO 10304-1:2009	28-mag-19	L1				
Indice di idrocarburi	mg/l	<0,5	5 (hc)	UNI EN ISO 9377-2:2002	31-mag-19	L1				
Cromo totale	mg/l	<0,003	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Ferro	mg/l	0,07±0,02	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Manganese	mg/l	0,004±0,001	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Nichel	mg/l	0,005±0,002	2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Piombo	mg/l	<0,003	0,2	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				

Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede			
Rame	mg/l	0,017±0,003	0,1	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

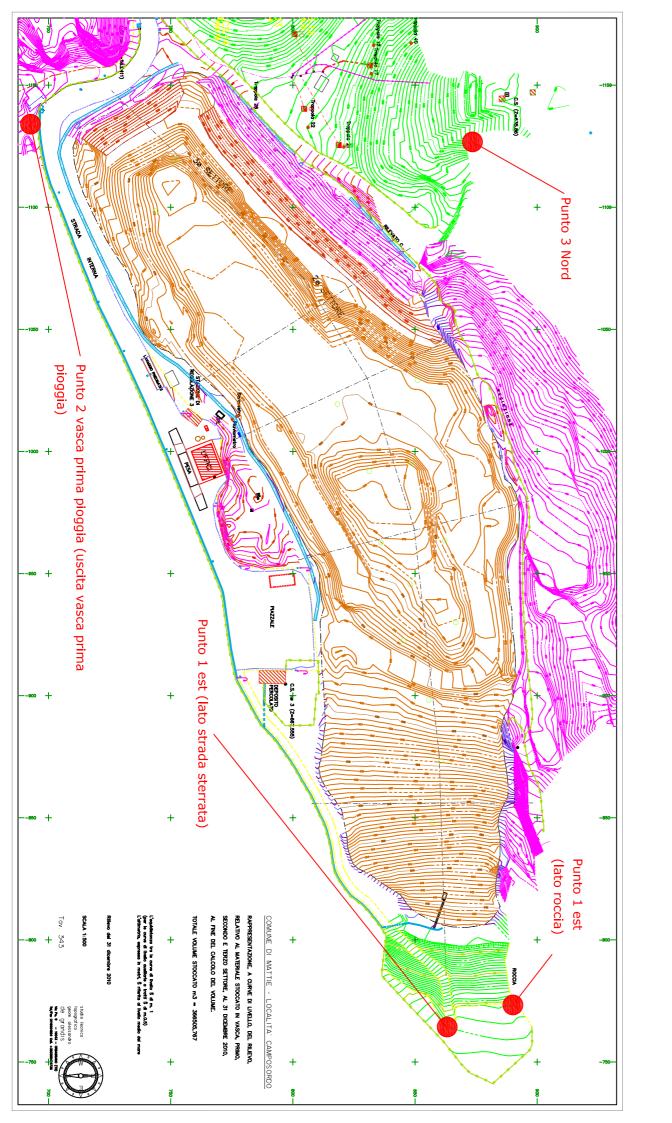
Opinioni e interpretazioni - non oggetto dell'accreditamento ACCREDIA:

(hc)=La denominazione Indice di idrocarburi riportata nel presente rapporto di prova è da considerarsi equivalente alla dicitura Idrocarburi totali citata nel D.Lgs.152/06, Parte III, All.5, Tab.3.

Dichiarazione di conformità:

Limitatamente ai parametri determinati si può affermare che il campione in esame è conforme a quanto previsto dal D.Lgs.152/06, Parte III, All.5, Tab.3 per gli scarichi in acqua superficiale.

Il Responsabile Settore Ambiente


Sig. Luca Soffiato

Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

RAPPORTO DI PROVA n. AGR190523B-002

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 4 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: RIFIUTI

Id campione cliente: **PERCOLATO LOTTO I**

Id campione interno: AGR190523B-002

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
рН*	pН	8,5	2-11,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1
Colore	-	on percettibile con diluizione 1:400	-	APAT CNR IRSA 2020A Man 29 2003	27-mag-19	L1
Materiali grossolani*	-	assenti	-	Visivo	27-mag-19	L1
Solidi totali - Residuo secco a 105°C	%	0,63	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.1.	27-mag-19	L1
Solidi Totali, Solidi Totali Fissi - Residuo a 550°C	%	0,5±0,1	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.2.	27-mag-19	L1
Conducibilità	uS/cm	14670	-	APAT CNR IRSA 2030 Man 29 2003	28-mag-19	L1
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	544	-	APHA Standard Methods for the Examination of Water and Wastewater ed 23nd 2017 5210D	29-mag-19	L1
COD Domanda chimica di ossigeno (come O2)*	mg/l	1457	-	ISO 15705:2002 (escluso p.to 10.3)	28-mag-19	L1
Solidi sospesi totali*	mg/l	53	-	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1
Alluminio*	mg/kg	0,4	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Zolfo totale*	mg/kg	42,5	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Arsenico*	mg/kg	0,020	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
Cadmio*	mg/kg	<0,003	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Cromo esavalente*	mg/kg	<2,5	1000	CNR IRSA 16 Q64 Vol. 3 1986	28-mag-19	L1
Cromo totale*	mg/kg	0,33	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Ferro*	mg/kg	8,1	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Manganese*	mg/kg	0,3	225000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Mercurio*	mg/kg	<0,0005	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Nichel*	mg/kg	0,4	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Piombo*	mg/kg	0,06	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Rame*	mg/kg	18,9	100000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Magnesio*	mg/kg	462	-	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1
Selenio*	mg/kg	<0,03	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Zinco*	mg/kg	3,1	250000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Bario*	mg/kg	0,3	25000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Boro*	mg/kg	3,1	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Solfati*	mg/kg	<40	-	EPA 9056A 2007	28-mag-19	L1
Cloruri*	mg/kg	1231	-	EPA 9056A 2007	28-mag-19	L1
Fluoruri*	mg/kg	15,4	-	EPA 9056A 2007	28-mag-19	L1
Solfiti*	mg/kg	<10	-	APAT CNR IRSA 4150B Man 29 2003	28-mag-19	L1
Solfuri (come H2S)*	mg/kg	<0,1	-	ISO 10530:1992	23-mag-19	L1
Cianuri*	mg/kg	<0,05	1000	M.U. 2251:08	28-mag-19	L1

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
Aldeidi totali*	mg/kg	<125	1000	APAT CNR IRSA 5010A Man 29 2003	28-mag-19	L1
Fenoli totali*	mg/kg	340,0	10000	APAT CNR IRSA 5070A2 Man. 29 2003	28-mag-19	L1
Fosforo totale (come P)*	mg/kg	8,3	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Azoto ammoniacale (come NH4)*	mg/l	1927	-	APAT CNR IRSA 3030 Man 29 2003	29-mag-19	L1
Azoto nitroso (come N)*	mg/l	<0,06	30000	EPA 9056A 2007	28-mag-19	L1
Azoto totale*	mg/l	2169	-	MI009_10	06-giu-19	L1
TOC Carbonio organico totale*	% p/p	546	-	UNI EN 13137:2002 Metodo B	27-mag-19	L1
Tensioattivi anionici*	mg/kg	0,53±0,07	-	APAT CNR IRSA 5170 Man 29 2003	27-mag-19	L1
Tensioattivi non ionici (BIAS)*	mg/kg	1,7	-	MI034_12 + MI033_12	27-mag-19	L1
Tensioattivi totali*	mg/kg	2,23	-	Calcolo	27-mag-19	L1
Idrocarburi totali	mg/kg	<0,83	250000	EPA 3550C 2007 + EPA 8015C 2007	31-mag-19	L1
Grassi e olii animali/vegetali*	mg/kg	<0,83	-	UNI EN ISO 9377-2:2002 espresso per calcolo	31-mag-19	L1
Clorofenoli*	mg/kg	<0,003	250000	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1
PCB Totali*	mg/kg	0,44	50	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1
Solventi organici aromatici	mg/kg	<0,02	1000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi alogenati*	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi clorurati	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi organici azotati*	mg/kg	<0,02	3000	UNI EN ISO 15009: 2013	30-mag-19	L1
Aldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Dieldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
Endrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Isodrin*	mg/kg	<0,0004	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Pesticidi fosforati*	mg/kg	<0,003	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Pesticidi totali*	mg/kg	<0,013	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

* = Prova non accreditata da ACCREDIA

Dichiarazione di conformità - non oggetto di accreditamento ACCREDIA:

- In riferimento alla natura/provenienza del campione ed in base ai risultati ottenuti, fermo restando la rappresentatività del campione e le informazioni ricevute, ai sensi della Decisione N. 2014/955/EU e del Regolamento UE 1357/2014 e s.m.i., è possibile classificare tale rifiuto con il codice CER 19 07 03 "percolato di discarica, diverso da quello di cui alla voce 19 07 02" e pertanto il medesimo è classificabile come rifiuto speciale non pericoloso.

Ai fini della classificazione del rifiuto, si sono considerate anche le modifiche al Regolamento CE 1272/2008 introdotte dai Regolamenti UE 1179/2016, UE 2017/776 e da quanto introdotto dal Regolamento UE 997/2017 per quanto riguarda la caratteristica di pericolo HP14 "ecotossico".

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

RAPPORTO DI PROVA n. AGR190523B-004

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 4 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: RIFIUTI

Id campione cliente: PERCOLATO LOTTO II

Id campione interno: AGR190523B-004

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

Risultati											
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede					
рН*	pН	8,2	2-11,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1					
Colore	-	on percettibile con diluizione 1:400	-	APAT CNR IRSA 2020A Man 29 2003	27-mag-19	L1					
Materiali grossolani*	-	assenti	-	Visivo	27-mag-19	L1					
Solidi totali - Residuo secco a 105°C	%	1,1	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.1.	06-giu-19	L1					
Solidi Totali, Solidi Totali Fissi - Residuo a 550°C	%	0,9	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.2.	06-giu-19	L1					
Conducibilità	uS/cm	24500	-	APAT CNR IRSA 2030 Man 29 2003	28-mag-19	L1					
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	976	-	APHA Standard Methods for the Examination of Water and Wastewater ed 23nd 2017 5210D	29-mag-19	L1					
COD Domanda chimica di ossigeno (come O2)*	mg/l	2510	-	ISO 15705:2002 (escluso p.to 10.3)	27-mag-19	L1					
Solidi sospesi totali*	mg/l	86	-	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1					
Alluminio*	mg/kg	0,49	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1					
Zolfo totale*	mg/kg	63,0	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1					
Arsenico*	mg/kg	0,052	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1					

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
Cadmio*	mg/kg	<0,003	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Cromo esavalente*	mg/kg	<2,5	1000	CNR IRSA 16 Q64 Vol. 3 1986	28-mag-19	L1
Cromo totale*	mg/kg	0,43	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Ferro*	mg/kg	6,3	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Manganese*	mg/kg	0,025	225000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Mercurio*	mg/kg	<0,0005	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Nichel*	mg/kg	0,40	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Piombo*	mg/kg	0,08	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Rame*	mg/kg	0,41	100000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Magnesio*	mg/kg	487	-	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1
Selenio*	mg/kg	<0,03	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Zinco*	mg/kg	1,4	250000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Bario*	mg/kg	0,38	25000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Boro*	mg/kg	3,4	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Solfati*	mg/kg	<40	-	EPA 9056A 2007	28-mag-19	L1
Cloruri*	mg/kg	2214	-	EPA 9056A 2007	28-mag-19	L1
Fluoruri*	mg/kg	<10	-	EPA 9056A 2007	28-mag-19	L1
Solfiti*	mg/kg	<10	-	APAT CNR IRSA 4150B Man 29 2003	28-mag-19	L1
Solfuri (come H2S)*	mg/kg	<0,1	-	ISO 10530:1992	23-mag-19	L1
Cianuri*	mg/kg	<0,05	1000	M.U. 2251:08	28-mag-19	L1

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
Aldeidi totali*	mg/kg	187,5	1000	APAT CNR IRSA 5010A Man 29 2003	28-mag-19	L1
Fenoli totali*	mg/kg	750,0	10000	APAT CNR IRSA 5070A2 Man. 29 2003	28-mag-19	L1
Fosforo totale (come P)*	mg/kg	11,8	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Azoto ammoniacale (come NH4)*	mg/l	5014	-	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1
Azoto nitroso (come N)*	mg/l	<0,06	30000	EPA 9056A 2007	28-mag-19	L1
Azoto totale*	mg/l	5349	-	MI009_10	06-giu-19	L1
TOC Carbonio organico totale*	% p/p	943	-	UNI EN 13137:2002 Metodo B	28-mag-19	L1
Tensioattivi anionici*	mg/kg	0,84±0,08	-	APAT CNR IRSA 5170 Man 29 2003	27-mag-19	L1
Tensioattivi non ionici (BIAS)*	mg/kg	3,0	-	MI034_12 + MI033_12	27-mag-19	L1
Tensioattivi totali*	mg/kg	3,84	-	Calcolo	27-mag-19	L1
Idrocarburi totali	mg/kg	<0,83	250000	EPA 3550C 2007 + EPA 8015C 2007	31-mag-19	L1
Grassi e olii animali/vegetali*	mg/kg	0,9	-	UNI EN ISO 9377-2:2002 espresso per calcolo	31-mag-19	L1
Clorofenoli*	mg/kg	<0,003	250000	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1
PCB Totali*	mg/kg	1,60	50	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1
Solventi organici aromatici	mg/kg	<0,02	1000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi alogenati*	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi clorurati	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi organici azotati*	mg/kg	<0,02	3000	UNI EN ISO 15009: 2013	30-mag-19	L1
Aldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Dieldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1

Risultati										
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede				
Endrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1				
Isodrin*	mg/kg	<0,0004	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1				
Pesticidi fosforati*	mg/kg	<0,003	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1				
Pesticidi totali*	mg/kg	<0,003	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1				

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

* = Prova non accreditata da ACCREDIA

Dichiarazione di conformità - non oggetto di accreditamento ACCREDIA:

- In riferimento alla natura/provenienza del campione ed in base ai risultati ottenuti, fermo restando la rappresentatività del campione e le informazioni ricevute, ai sensi della Decisione N. 2014/955/EU e del Regolamento UE 1357/2014 e s.m.i., è possibile classificare tale rifiuto con il codice CER 19 07 03 "percolato di discarica, diverso da quello di cui alla voce 19 07 02" e pertanto il medesimo è classificabile come rifiuto speciale non pericoloso.

Ai fini della classificazione del rifiuto, si sono considerate anche le modifiche al Regolamento CE 1272/2008 introdotte dai Regolamenti UE 1179/2016, UE 2017/776 e da quanto introdotto dal Regolamento UE 997/2017 per quanto riguarda la caratteristica di pericolo HP14 "ecotossico".

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

RAPPORTO DI PROVA n. AGR190523B-006

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 4 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: RIFIUTI

Id campione cliente: PERCOLATO LOTTO III SETTORE 1°

Id campione interno: AGR190523B-006

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

Risultati										
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede				
рН*	pН	8,4	2-11,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1				
Colore	-	on percettibile con diluizione 1:400	-	APAT CNR IRSA 2020A Man 29 2003	27-mag-19	L1				
Materiali grossolani*	-	assenti	-	Visivo	27-mag-19	L1				
Solidi totali - Residuo secco a 105°C	%	1,0	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.1.	06-giu-19	L1				
Solidi Totali, Solidi Totali Fissi - Residuo a 550°C	%	0,78	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.2.	06-giu-19	L1				
Conducibilità	uS/cm	23600	-	APAT CNR IRSA 2030 Man 29 2003	28-mag-19	L1				
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	1693	-	APHA Standard Methods for the Examination of Water and Wastewater ed 23nd 2017 5210D	29-mag-19	L1				
COD Domanda chimica di ossigeno (come O2)*	mg/l	4349	-	ISO 15705:2002 (escluso p.to 10.3)	27-mag-19	L1				
Solidi sospesi totali*	mg/l	105	-	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1				
Alluminio*	mg/kg	1,7	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Zolfo totale*	mg/kg	44,2	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Arsenico*	mg/kg	0,06	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
Cadmio*	mg/kg	<0,003	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Cromo esavalente*	mg/kg	<2,5	1000	CNR IRSA 16 Q64 Vol. 3 1986	28-mag-19	L1
Cromo totale*	mg/kg	1,0	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Ferro*	mg/kg	12,2	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Manganese*	mg/kg	0,10	225000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Mercurio*	mg/kg	<0,0005	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Nichel*	mg/kg	0,6	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Piombo*	mg/kg	0,6	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Rame*	mg/kg	11,4	100000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Magnesio*	mg/kg	454	-	APAT CNR IRSA 3030 Man 29 2003	29-mag-19	L1
Selenio*	mg/kg	<0,03	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Zinco*	mg/kg	13,3	250000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Bario*	mg/kg	0,6	25000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Boro*	mg/kg	8,4	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1
Solfati*	mg/kg	<40	-	EPA 9056A 2007	28-mag-19	L1
Cloruri*	mg/kg	2362	-	EPA 9056A 2007	28-mag-19	L1
Fluoruri*	mg/kg	<10	-	EPA 9056A 2007	28-mag-19	L1
Solfiti*	mg/kg	430	-	APAT CNR IRSA 4150B Man 29 2003	28-mag-19	L1
Solfuri (come H2S)*	mg/kg	<0,1	-	ISO 10530:1992	23-mag-19	L1
Cianuri*	mg/kg	<0,05	1000	M.U. 2251:08	28-mag-19	L1

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
Aldeidi totali*	mg/kg	275,0	1000	APAT CNR IRSA 5010A Man 29 2003	28-mag-19	L1
Fenoli totali*	mg/kg	1280,0	10000	APAT CNR IRSA 5070A2 Man. 29 2003	28-mag-19	L1
Fosforo totale (come P)*	mg/kg	14,7	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1
Azoto ammoniacale (come NH4)*	mg/l	5289	-	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1
Azoto nitroso (come N)*	mg/l	<0,06	30000	EPA 9056A 2007	28-mag-19	L1
Azoto totale*	mg/l	5977	-	MI009_10	06-giu-19	L1
TOC Carbonio organico totale*	% p/p	1631	-	UNI EN 13137:2002 Metodo B	27-mag-19	L1
Tensioattivi anionici*	mg/kg	0,5±0,1	-	APAT CNR IRSA 5170 Man 29 2003	27-mag-19	L1
Tensioattivi non ionici (BIAS)*	mg/kg	1,8	-	MI034_12 + MI033_12	27-mag-19	L1
Tensioattivi totali*	mg/kg	2,26	-	Calcolo	27-mag-19	L1
Idrocarburi totali	mg/kg	<0,83	250000	EPA 3550C 2007 + EPA 8015C 2007	31-mag-19	L1
Grassi e olii animali/vegetali*	mg/kg	0,9	-	UNI EN ISO 9377-2:2002 espresso per calcolo	31-mag-19	L1
Clorofenoli*	mg/kg	<0,003	250000	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1
PCB Totali*	mg/kg	1,65	50	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1
Solventi organici aromatici	mg/kg	<0,02	1000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi alogenati*	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi clorurati	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1
Solventi organici azotati*	mg/kg	<0,02	3000	UNI EN ISO 15009: 2013	30-mag-19	L1
Aldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Dieldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1

Risultati						
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede
Endrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Isodrin*	mg/kg	<0,0004	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Pesticidi fosforati*	mg/kg	<0,003	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1
Pesticidi totali*	mg/kg	<0,013	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

* = Prova non accreditata da ACCREDIA

Dichiarazione di conformità - non oggetto di accreditamento ACCREDIA:

- In riferimento alla natura/provenienza del campione ed in base ai risultati ottenuti, fermo restando la rappresentatività del campione e le informazioni ricevute, ai sensi della Decisione N. 2014/955/EU e del Regolamento UE 1357/2014 e s.m.i., è possibile classificare tale rifiuto con il codice CER 19 07 03 "percolato di discarica, diverso da quello di cui alla voce 19 07 02" e pertanto il medesimo è classificabile come rifiuto speciale non pericoloso.

Ai fini della classificazione del rifiuto, si sono considerate anche le modifiche al Regolamento CE 1272/2008 introdotte dai Regolamenti UE 1179/2016, UE 2017/776 e da quanto introdotto dal Regolamento UE 997/2017 per quanto riguarda la caratteristica di pericolo HP14 "ecotossico".

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

ianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

RAPPORTO DI PROVA n. AGR190523B-008

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 4 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: RIFIUTI

Id campione cliente: PERCOLATO LOTTO III SETTORE 2°

Id campione interno: AGR190523B-008

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 10/06/19

Risultati										
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede				
рН*	pН	8,5	2-11,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1				
Colore	-	on percettibile con diluizione 1:400	-	APAT CNR IRSA 2020A Man 29 2003	27-mag-19	L1				
Materiali grossolani*	-	assenti	-	Visivo	27-mag-19	L1				
Solidi totali - Residuo secco a 105°C	%	1,42	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.1.	06-giu-19	L1				
Solidi Totali, Solidi Totali Fissi - Residuo a 550°C	%	0,9	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.2.	06-giu-19	L1				
Conducibilità	uS/cm	27900	-	APAT CNR IRSA 2030 Man 29 2003	28-mag-19	L1				
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	1960	-	APHA Standard Methods for the Examination of Water and Wastewater ed 23nd 2017 5210D	29-mag-19	L1				
COD Domanda chimica di ossigeno (come O2)*	mg/l	5165	-	ISO 15705:2002 (escluso p.to 10.3)	27-mag-19	L1				
Solidi sospesi totali*	mg/l	138	-	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1				
Alluminio*	mg/kg	2,6	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Zolfo totale*	mg/kg	63,,2	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Arsenico*	mg/kg	0,10	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				

Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede			
Cadmio*	mg/kg	<0,003	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Cromo esavalente*	mg/kg	<2,5	1000	CNR IRSA 16 Q64 Vol. 3 1986	28-mag-19	L1			
Cromo totale*	mg/kg	1,3	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Ferro*	mg/kg	15,7	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Manganese*	mg/kg	0,15	225000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Mercurio*	mg/kg	<0,0005	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Nichel*	mg/kg	0,6	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Piombo*	mg/kg	0,3	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Rame*	mg/kg	10,9	100000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Magnesio*	mg/kg	105	-	APAT CNR IRSA 3030 Man 29 2003	29-mag-19	L1			
Selenio*	mg/kg	<0,03	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Zinco*	mg/kg	7,23	250000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Bario*	mg/kg	0,6	25000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Boro*	mg/kg	2,9	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Solfati*	mg/kg	53,2	-	EPA 9056A 2007	28-mag-19	L1			
Cloruri*	mg/kg	2804	-	EPA 9056A 2007	28-mag-19	L1			
Fluoruri*	mg/kg	<10	-	EPA 9056A 2007	28-mag-19	L1			
Solfiti*	mg/kg	<10	-	APAT CNR IRSA 4150B Man 29 2003	28-mag-19	L1			
Solfuri (come H2S)*	mg/kg	<0,1	-	ISO 10530:1992	23-mag-19	L1			
Cianuri*	mg/kg	<0,05	1000	M.U. 2251:08	28-mag-19	L1			

Risultati										
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede				
Aldeidi totali*	totali* mg/kg 375,0		1000	APAT CNR IRSA 5010A Man 29 2003	28-mag-19	L1				
Fenoli totali*	mg/kg	1640,0	10000	APAT CNR IRSA 5070A2 Man. 29 2003	28-mag-19	L1				
Fosforo totale (come P)*	mg/kg	14,4	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1				
Azoto ammoniacale (come NH4)*	mg/l	5213	-	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1				
Azoto nitroso (come N)*	mg/l	<0,06	30000	EPA 9056A 2007	28-mag-19	L1				
Azoto totale*	mg/l	5882	-	MI009_10	06-giu-19	L1				
TOC Carbonio organico totale*	% p/p	1937	-	UNI EN 13137:2002 Metodo B	27-mag-19	L1				
Tensioattivi anionici*	mg/kg	0,6±0,1	-	APAT CNR IRSA 5170 Man 29 2003	27-mag-19	L1				
Tensioattivi non ionici (BIAS)*	mg/kg	1,7	-	MI034_12 + MI033_12	27-mag-19	L1				
Tensioattivi totali*	mg/kg	2,28	-	Calcolo	27-mag-19	L1				
Idrocarburi totali	mg/kg	<0,83	250000	EPA 3550C 2007 + EPA 8015C 2007	31-mag-19	L1				
Grassi e olii animali/vegetali*	mg/kg	2,62	-	UNI EN ISO 9377-2:2002 espresso per calcolo	31-mag-19	L1				
Clorofenoli*	mg/kg	<0,003	250000	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1				
PCB Totali*	mg/kg	4,26	50	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1				
Solventi organici aromatici	mg/kg	<0,02	1000	UNI EN ISO 15009: 2013	30-mag-19	L1				
Solventi alogenati*	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1				
Solventi clorurati	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1				
Solventi organici azotati*	mg/kg	<0,02	3000	UNI EN ISO 15009: 2013	30-mag-19	L1				
Aldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1				
Dieldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1				

Risultati									
Caratteristica chimico-fisica	UM Valore Riscontrat ± U		Valore Limite	Metodo di prova	Data Analisi	Sede			
Endrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1			
Isodrin*	mg/kg	<0,0004	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1			
Pesticidi fosforati*	mg/kg	<0,003	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1			
Pesticidi totali*	mg/kg	<0,013	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1			

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

* = Prova non accreditata da ACCREDIA

Dichiarazione di conformità - non oggetto di accreditamento ACCREDIA:

- In riferimento alla natura/provenienza del campione ed in base ai risultati ottenuti, fermo restando la rappresentatività del campione e le informazioni ricevute, ai sensi della Decisione N. 2014/955/EU e del Regolamento UE 1357/2014 e s.m.i., è possibile classificare tale rifiuto con il codice CER 19 07 03 "percolato di discarica, diverso da quello di cui alla voce 19 07 02" e pertanto il medesimo è classificabile come rifiuto speciale non pericoloso.

Ai fini della classificazione del rifiuto, si sono considerate anche le modifiche al Regolamento CE 1272/2008 introdotte dai Regolamenti UE 1179/2016, UE 2017/776 e da quanto introdotto dal Regolamento UE 997/2017 per quanto riguarda la caratteristica di pericolo HP14 "ecotossico".

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Data e ora della firma: 10/06/2019 15:18:29

RAPPORTO DI PROVA n. AGR190523B-010

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 4 pagine

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: RIFIUTI

Id campione cliente: PERCOLATO LOTTO III SETTORE 3°

Id campione interno: AGR190523B-010

Data campionamento inizio: 23/05/19

Data campionamento fine: 23/05/19

Procedura di campionamento: Campionamento effettuato dal committente

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 10/06/19

Risultati										
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U 8,62±0,8	Valore Limite	Metodo di prova	Data Analisi	Sede				
рН*	pH		2-11,5	APAT CNR IRSA 2060 Man 29 2003	28-mag-19	L1				
Colore	-	on percettibile con diluizione 1:400	-	APAT CNR IRSA 2020A Man 29 2003	27-mag-19	L1				
Materiali grossolani*	-	assenti	-	Visivo	27-mag-19	L1				
Solidi totali - Residuo secco a 105°C	%	1,3	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.1.	06-giu-19	L1				
Solidi Totali, Solidi Totali Fissi - Residuo a 550°C	%	1,0	-	CNR IRSA 2 Q64 Vol 2 1984. app. 2.4.2.	06-giu-19	L1				
Conducibilità	uS/cm	20700	-	APAT CNR IRSA 2030 Man 29 2003	28-mag-19	L1				
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	1136	-	APHA Standard Methods for the Examination of Water and Wastewater ed 23nd 2017 5210D	29-mag-19	L1				
COD Domanda chimica di ossigeno (come O2)*	mg/l	3065	-	ISO 15705:2002 (escluso p.to 10.3)	27-mag-19	L1				
Solidi sospesi totali*	mg/l	245	-	APAT CNR IRSA 2090B Man 29 2003	31-mag-19	L1				
Alluminio*	mg/kg	1,8	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Zolfo totale*	mg/kg	56,2	200000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				
Arsenico*	mg/kg	0,10	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1				

Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede			
Cadmio*	mg/kg	<0,003	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Cromo esavalente*	mg/kg	<2,5	1000	CNR IRSA 16 Q64 Vol. 3 1986	28-mag-19	L1			
Cromo totale*	mg/kg	0,9	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Ferro*	mg/kg	12,9	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Manganese*	mg/kg	0,24	225000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Mercurio*	mg/kg	<0,0005	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Nichel*	mg/kg	1,5	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Piombo*	mg/kg	0,21	1000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Rame*	mg/kg	8,0	100000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Magnesio*	mg/kg	120	-	APAT CNR IRSA 3030 Man 29 2003	29-mag-19	L1			
Selenio*	mg/kg	<0,03	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Zinco*	mg/kg	6,8	250000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Bario*	mg/kg	6,8	25000	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Boro*	mg/kg	3,2	2500	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	29-mag-19	L1			
Solfati*	mg/kg	426	-	EPA 9056A 2007	28-mag-19	L1			
Cloruri*	mg/kg	2546	-	EPA 9056A 2007	28-mag-19	L1			
Fluoruri*	mg/kg	<10	-	EPA 9056A 2007	28-mag-19	L1			
Solfiti*	mg/kg	<10	-	APAT CNR IRSA 4150B Man 29 2003	28-mag-19	L1			
Solfuri (come H2S)*	mg/kg	<0,1	-	ISO 10530:1992	23-mag-19	L1			
Cianuri*	mg/kg	<0,05	1000	M.U. 2251:08	28-mag-19	L1			

Risultati										
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede				
Aldeidi totali*	mg/kg	375,0	1000	APAT CNR IRSA 5010A Man 29 2003	28-mag-19	L1				
Fenoli totali*	mg/kg	1660,0	10000	APAT CNR IRSA 5070A2 Man. 29 2003	28-mag-19	L1				
Fosforo totale (come P)*	mg/kg	8,9	-	UNI EN ISO 15587-1:2002 + UNI EN ISO 17294-2:2016	28-mag-19	L1				
Azoto ammoniacale (come NH4)*	mg/l	3690	-	APAT CNR IRSA 3030 Man 29 2003	28-mag-19	L1				
Azoto nitroso (come N)*	mg/l	4,5	30000	EPA 9056A 2007	28-mag-19	L1				
Azoto totale*	mg/l	4173	-	MI009_10	06-giu-19	L1				
TOC Carbonio organico totale*	% p/p	1149	-	UNI EN 13137:2002 Metodo B	27-mag-19	L1				
Tensioattivi anionici*	mg/kg	0,08±0,02	-	APAT CNR IRSA 5170 Man 29 2003	27-mag-19	L1				
Tensioattivi non ionici (BIAS)*	mg/kg	2,4	-	MI034_12 + MI033_12	27-mag-19	L1				
Tensioattivi totali*	mg/kg	2,48	-	Calcolo	27-mag-19	L1				
Idrocarburi totali	mg/kg	<0,83	250000	EPA 3550C 2007 + EPA 8015C 2007	31-mag-19	L1				
Grassi e olii animali/vegetali*	mg/kg	<0,83	-	UNI EN ISO 9377-2:2002 espresso per calcolo	31-mag-19	L1				
Clorofenoli*	mg/kg	<0,003	250000	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1				
PCB Totali*	mg/kg	0,60	50	EPA 3550C 2007 + EPA 8270E 2017	01-giu-19	L1				
Solventi organici aromatici	mg/kg	<0,02	1000	UNI EN ISO 15009: 2013	30-mag-19	L1				
Solventi alogenati*	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1				
Solventi clorurati	mg/kg	<0,2	10000	UNI EN ISO 15009: 2013	30-mag-19	L1				
Solventi organici azotati*	mg/kg	<0,02	3000	UNI EN ISO 15009: 2013	30-mag-19	L1				
Aldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1				
Dieldrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1				

Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Analisi	Sede			
Endrin*	mg/kg	<0,0004	50	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1			
Isodrin*	mg/kg	<0,0004	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1			
Pesticidi fosforati*	mg/kg	<0,003	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1			
Pesticidi totali*	mg/kg	<0,013	1000	EPA 3550C 2007 + EPA 8270E 2017	31-mag-19	L1			

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

L'incertezza (U) riportata nel presente rapporto di prova è di tipo esteso e calcolata con un livello di probabilità del 95% con coefficiente di copertura K=2.

* = Prova non accreditata da ACCREDIA

Dichiarazione di conformità - non oggetto di accreditamento ACCREDIA:

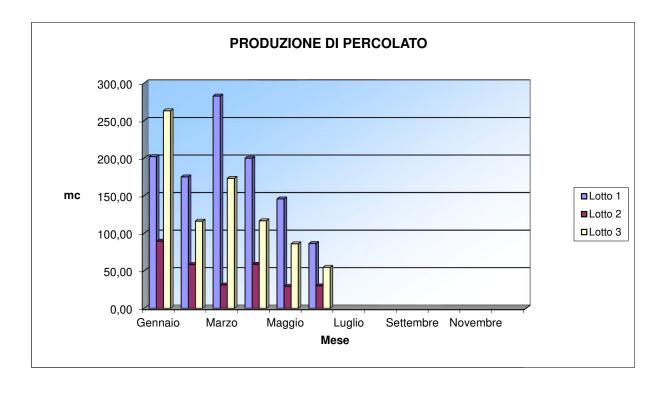
- In riferimento alla natura/provenienza del campione ed in base ai risultati ottenuti, fermo restando la rappresentatività del campione e le informazioni ricevute, ai sensi della Decisione N. 2014/955/EU e del Regolamento UE 1357/2014 e s.m.i., è possibile classificare tale rifiuto con il codice CER 19 07 03 "percolato di discarica, diverso da quello di cui alla voce 19 07 02" e pertanto il medesimo è classificabile come rifiuto speciale non pericoloso.

Ai fini della classificazione del rifiuto, si sono considerate anche le modifiche al Regolamento CE 1272/2008 introdotte dai Regolamenti UE 1179/2016, UE 2017/776 e da quanto introdotto dal Regolamento UE 997/2017 per quanto riguarda la caratteristica di pericolo HP14 "ecotossico".

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico


Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Data e ora della firma: 10/06/2019 15:18:25

Mese	Lotto 1	Lotto 2	Lotto 3		
Gennaio	202,02	89,44	263,02		
Febbraio	175,06	58,36	116,18		
Marzo	282,72	31,06	173,18		
Aprile	199,96	58,84	116,70		
Maggio	145,78	29,32	86,03		
Giugno	86,42	29,96	54,64		
Luglio					
Agosto					
Settembre					
Ottobre					
Novembre					
Dicembre					
Totali	1.091,96	296,98	809,75	Totale	2.198,69

Battente in cm	LIV.max					
		Liv.Min	LIV.max	Liv.Min	LIV.max	Liv.Min
01/01/2019	-	-	-	-	-	-
02/01/2019	115	0	9	0	3	0
03/01/2019	120	0	10	0	3	0
04/01/2019	110	0	10	0	3	0
05/01/2019	112	0	10	0	3	0
06/01/2019	-	-	-	-	-	-
07/01/2019	115	0	9	0	3	0
08/01/2019	120	0	10	0	3	0
09/01/2019	115	0	10	0	3	0
10/01/2019	110	0	10	0	3	0
11/01/2019	120	0	10	0	3	0
12/01/2019	115	0	10	0	3	0
13/01/2019	-	-	-	-	-	-
14/01/2019	110	0	10	0	3	0
15/01/2019	115	0	10	0	4	0
16/01/2019	120	0	10	0	4	0
17/01/2019	110	0	10	0	4	0
18/01/2019	120	0	10	0	5	0
19/01/2019	115	0	10	0	5	0
20/01/2019	-	-	-	-	-	-
21/01/2019	110	0	9	0	5	0
22/01/2019	120	0	9	0	5	0
23/01/2019	116	0	10	0	5	0
24/01/2019	110	0	10	0	5	0
25/01/2019	120	0	8	0	5	0
26/01/2019	117	0	9	0	5	0
27/01/2019	-	-	-	-	-	-
28/01/2019	110	0	9	0	5	0
29/01/2019	115	0	10	0	5	0
30/01/2019	122	0	10	0	6	0
31/01/2019	117	0	10	0	6	0

Battente in cm 01/02/2019 02/02/2019 03/02/2019 04/02/2019 05/02/2019	119 120 - 130 120 120	0 0 - 0 0	10 10 - 10	Liv.Min 0 0 -	6 7	Liv.Min 0 0
02/02/2019 03/02/2019 04/02/2019	120 - 130 120	0 - 0	10	0		•
03/02/2019 04/02/2019	- 130 120	- 0	-	-	7	0
04/02/2019	120		- 10	-	-	
	120		10			-
05/02/2019		0		0	4	0
00,00,00	128		10	0	4	0
06/02/2019		0	10	0	5	0
07/02/2019	125	0	10	0	5	0
08/02/2019	130	0	10	0	5	0
09/02/2019	125	0	10	0	5	0
10/02/2019	-	-	-	-	-	-
11/02/2019	120	0	10	0	5	0
12/02/2019	122	0	10	0	5	0
13/02/2019	128	0	10	0	5	0
14/02/2019	120	0	10	0	5	0
15/02/2019	126	0	10	0	5	0
16/02/2019	122	0	10	0	5	0
17/02/2019	-	-	-	-	-	-
18/02/2019	125	0	10	0	5	0
19/02/2019	131	0	9	0	6	0
20/02/2019	127	0	9	0	6	0
21/02/2019	130	0	9	0	6	0
22/02/2019	128	0	9	0	6	0
23/02/2019	131	0	10	0	6	0
24/02/2019	-	-	-	-	-	-
25/02/2019	130	0	10	0	6	0
26/02/2019	135	0	10	0	6	0
27/02/2019	128	0	10	0	4	0
28/02/2019	125	0	10	0	4	0
Ī						

Battente in cm	83 85 - 84 88 83 90 96	0 0 - 0 0 0	10 9 - 9 10	Liv.Min 0 0 - 0	4 4 -	0 0
02/03/2019 03/03/2019 04/03/2019 05/03/2019 06/03/2019 07/03/2019 08/03/2019 09/03/2019 10/03/2019 11/03/2019	85 - 84 88 83 90	0 - 0 0	9 - 9	0 -	•	•
03/03/2019 04/03/2019 05/03/2019 06/03/2019 07/03/2019 08/03/2019 09/03/2019 10/03/2019 11/03/2019	- 84 88 83 90	- 0 0	- 9	-	-	0
04/03/2019 05/03/2019 06/03/2019 07/03/2019 08/03/2019 09/03/2019 10/03/2019 11/03/2019	88 83 90	0		-	-	
05/03/2019 06/03/2019 07/03/2019 08/03/2019 09/03/2019 10/03/2019 11/03/2019	88 83 90	0		Λ		-
06/03/2019 07/03/2019 08/03/2019 09/03/2019 10/03/2019 11/03/2019	83 90	_	10	U	4	0
07/03/2019 08/03/2019 09/03/2019 10/03/2019 11/03/2019	90	0	10	0	5	0
08/03/2019 09/03/2019 10/03/2019 11/03/2019		~	10	0	5	0
09/03/2019 10/03/2019 11/03/2019	96	0	10	0	5	0
10/03/2019 11/03/2019		0	10	0	5	0
11/03/2019	110	0	10	0	5	0
	-	-	-	-	-	-
12/03/2019	115	0	10	0	5	0
	116	0	10	0	6	0
13/03/2019	121	0	10	0	6	0
14/03/2019	125	0	10	0	6	0
15/03/2019	122	0	10	0	7	0
16/03/2019	123	0	10	0	7	0
17/03/2019	-	-	-	-	-	-
18/03/2019	126	0	10	0	7	0
19/03/2019	128	0	10	0	7	0
20/03/2019	125	0	10	0	7	0
21/03/2019	122	0	9	0	7	0
22/03/2019	125	0	9	0	7	0
23/03/2019	123	0	10	0	7	0
24/03/2019	-	-	-	-	-	-
25/03/2019	122	0	10	0	8	0
26/03/2019	125	0	9	0	8	0
27/03/2019	123	0	10	0	8	0
28/03/2019	115	0	10	0	8	0
29/03/2019	112	0	10	0	8	0
30/03/2019	121	0	10	0	8	0
31/03/2019	-	-	-	-	-	-

	1° sett.		2° sett.		3° sett.	
Battente in cm	LIV.max	Liv.Min	LIV.max	Liv.Min	LIV.max	Liv.Min
01/04/2019	119	0	10	0	8	0
02/04/2019	121	0	10	0	8	0
03/04/2019	120	0	10	0	8	0
04/04/2019	128	0	10	0	8	0
05/04/2019	122	0	9	0	8	0
06/04/2019	121	0	9	0	8	0
07/04/2019	-	-	-	-	-	-
08/04/2019	128	0	10	0	8	0
09/04/2019	122	0	10	0	8	0
10/04/2019	124	0	10	0	8	0
11/04/2019	125	0	10	0	8	0
12/04/2019	120	0	10	0	8	0
13/04/2019	124	0	10	0	8	0
14/04/2019	-	-	-	-	-	-
15/04/2019	128	0	10	0	8	0
16/04/2019	122	0	10	0	8	0
17/04/2019	123	0	10	0	8	0
18/04/2019	122	0	10	0	8	0
19/04/2019	125	0	10	0	8	0
20/04/2019	123	0	10	0	8	0
21/04/2019	-	-	-	-	-	-
22/04/2019	-	-	-	-	-	-
23/04/2019	126	0	10	0	8	0
24/04/2019	122	0	10	0	8	0
25/04/2019	-	-	-	-	-	-
26/04/2019	120	0	10	0	8	0
27/04/2019	126	0	10	0	8	0
28/04/2019	-	-	-	-	-	-
29/04/2019	122	0	10	0	8	0
30/04/2019	126	0	10	0	8	0

	1° sett.		2° sett.		3° sett.	
Battente in cm	LIV.max	Liv.Min	LIV.max	Liv.Min	LIV.max	Liv.Min
01/05/2019	-	-	-	-	-	-
02/05/2019	118	0	10	0	8	0
03/05/2019	121	0	10	0	8	0
04/05/2019	124	0	10	0	8	0
05/05/2019	-	-	-	-	-	-
06/05/2019	118	0	10	0	8	0
07/05/2019	122	0	10	0	8	0
08/05/2019	120	0	10	0	7	0
09/05/2019	122	0	10	0	7	0
10/05/2019	120	0	10	0	7	0
11/05/2019	124	0	10	0	7	0
12/05/2019	-	-	-	-	-	-
13/05/2019	125	0	10	0	7	0
14/05/2019	120	0	10	0	7	0
15/05/2019	122	0	10	0	7	0
16/05/2019	123	0	10	0	6	0
17/05/2019	124	0	10	0	6	
18/05/2019	122	0	10	0	5	0
19/05/2019	-	-	-	-	-	-
20/05/2019	118	0	10	0	4	0
21/05/2019	125	0	10	0	4	0
22/05/2019	124	0	10	0	4	0
23/05/2019	127	0	10	0	4	0
24/05/2019	110	0	10	0	4	0
25/05/2019	118	0	10	0	4	0
26/05/2019	-	-	-	-	-	-
27/05/2019	125	0	10	0	4	0
28/05/2019	120	0	10	0	4	0
29/05/2019	121	0	10	0	4	0
30/05/2019	126	0	10	0	4	0
31/05/2019	127	0	10	0	4	0

	1° sett.		2° sett.		3° sett.	
Battente in cm	LIV.max	Liv.Min	LIV.max	Liv.Min	LIV.max	Liv.Min
01/06/2019	125	0	10	0	4	0
02/06/2019	-	-	-	-	-	-
03/06/2019	127	0	10	0	5	0
04/06/2019	124	0	10	0	6	0
05/06/2019	126	0	10	0	5	0
06/06/2019	125	0	10	0	5	0
07/06/2019	124	0	10	0	5	0
08/06/2019	123	0	10	0	5	0
09/06/2019	-	-	-	-	-	-
10/06/2019	126	0	10	0	4	0
11/06/2019	128	0	11	0	5	0
12/06/2019	123	0	10	0	6	0
13/06/2019	128	0	10	0	6	0
14/06/2019	129	0	10	0	6	0
15/06/2019	125	0	10	0	6	0
16/06/2019	-	-	-	-	-	-
17/06/2019	120	0	11	0	6	0
18/06/2019	122	0	10	0	6	0
19/06/2019	123	0	11	0	5	0
20/06/2019	125	0	11	0	5	0
21/06/2019	128	0	11	0	5	0
22/06/2019	124	0	11	0	4	0
23/06/2019	-	-	-	-	-	-
24/06/2019	121	0	10	0	4	0
25/06/2019	123	0	10	0	3	0
26/06/2019	124	0	10	0	3	0
27/06/2019	123	0	11	0	3	0
28/06/2019	121	0	11	0	3	0
29/06/2019	122	0	11	0	3	0
30/06/2019	-	-	-	-	-	-

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	02/01/2019		Press. Atm. I	Mb 942
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola 100	0	0,3	20,1			0	
trappola 101	0	0,3	20,2			0	
trappola 102	0	0,5	20			0	
trappola 103	0	0,6	19,7			0	
trappola 104	0	0,7	19,6			0	
trappola 105	0	0,5	19,9			0	
trappola 106	0	0,7	19,7			0	
trappola 107	0	0,9	19,4			0	
trappola 108	0	0,1	20,3			0	Ufficio
trappola 109	0	0,4	20			0	
trappola 110	0	0,4	19,9			0	
trappola 111	0	0,6	19,8			0	
trappola 112	0	0,8	19,5			0	
trappola 113	0	0,5	19,9			0	
trappola 114	0	0,6	19,9			0	
trappola 115	0	0,7	19,7			0	
trappola 116	0	0,9	19,6			0	

Annotazioni : Analisi ore 10.00 C° 8

anno 2019	Vecchia disca	rica di Mattie		02/01/2019		Press. Atm. N	/lb	942
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
				•		_		
trappola n. 1	0	0,5	20			0		
trappola n. 2	0	0,5	19,9			0		
trappola n. 3	0	0,6	19,8			0		
trappola n. 4	0	0,5	20			0		
trappola n. 5	0	0,3	20,1			0		
trappola n. 6	0	0,4	20,1			0		
trappola n. 7	0	0,4	20			0		
trappola n. 8	0	0,5	20			0		
trappola n. 9	0	0,6	19,8			0		
trappola n. 10	0	0,5	19,8			0		
trappola n. 11	0	0,4	20			0		
trappola n. 12	0	0,6	19,8			0		
trappola n. 13	0	0,5	20			0		
trappola n. 14	0	0,6	19,8			0		
trappola n. 15	0	0,6	19,7			0		
trappola n. 16	0	0,4	20			0		
trappola n. 17	0	0,6	19,8			0		
trappola n. 18	0	0,6	19,9			0		
trappola n. 19	0	0,3	20,1			0		
trappola n. 20	0	0,6	19,9			0		

anno 2019	NUOVA DISC	ARICA DI MA	ΓΤΙΕ	09/01/2019		Press. Atm. N	Иb	933
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,4	20			0		
trappola 101	0	0,2	20,3			0		
trappola 102	0	0,3	20,1			0		
trappola 103	0	0,5	20			0		
trappola 104	0	0,5	19,9			0		
trappola 105	0	0,7	19,6			0		
trappola 106	0	0,4	20			0		
trappola 107	0	0,6	19,8			0		
trappola 108	0	0,2	20,2			0	Ufficio	
trappola 109	0	0,3	20,1			0		
trappola 110	0	0,6	19,9			0		
trappola 111	0	0,5	20			0		
trappola 112	0	3,2	17,2			0		
trappola 113	0	0,4	20,1			0		
trappola 114	0	0,5	19,9			0		
trappola 115	0	0,6	19,6			0		
trappola 116	0	2,8	17,5			0		

Annotazioni : Analisi ore 9.30 C° 4

anno 2019	Vecchia disca	rica di Mattie		09/01/2019		Press. Atm. MI	b	933
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,7	19,5			0		
trappola n. 2	0	0,6	19,7			0		
trappola n. 3	0	0,8	19,5			0		
trappola n. 4	0	0,6	19,8			0		
trappola n. 5	0	0,4	20			0		
trappola n. 6	0	0,4	20			0		
trappola n. 7	0	0,6	19,9			0	-	
trappola n. 8	0	0,7	19,7			0	-	
trappola n. 9	0	0,8	19,5			0	-	
trappola n. 10	0	0,7	19,5			0		
trappola n. 11	0	0,6	19,6			0		
trappola n. 12	0	0,4	20			0		
trappola n. 13	0	0,4	20			0		
trappola n. 14	0	0,5	19,8			0		
trappola n. 15	0	0,8	19,6			0		
trappola n. 16	0	0,3	20,2			0		
trappola n. 17	0	0,4	20,1			0		
trappola n. 18	0	0,7	19,7			0		
trappola n. 19	0	0,6	19,7			0		
trappola n. 20	0	0,7	19,8			0		

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	16/01/2019		Press. Atm. I	Mb	940
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,5	19,9			0		
trappola 101	0	0,4	20			0		
trappola 102	0	0,4	19,9			0		
trappola 103	0	0,6	19,8			0		
trappola 104	0	0,7	19,7			0		
trappola 105	0	0,5	20			0		
trappola 106	0	0,6	19,7			0		
trappola 107	0	0,8	19,6			0		
trappola 108	0	0,1	20,3			0	Ufficio	
trappola 109	0	0,6	19,7			0		
trappola 110	0	0,8	19,5			0		
trappola 111	0	0,8	19,6			0		
trappola 112	0	2	18,3			0		
trappola 113	0	0,6	19,8			0		
trappola 114	0	0,7	19,7			0		
trappola 115	0	0,7	19,7			0		
trappola 116	0	1,8	18,6			0		

Annotazioni : Analisi ore 12.30 C° 3

anno 2019	Vecchia disca	rica di Mattie		16/01/2019		Press. Atm. M	b	940
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,5	20			0		
trappola n. 2	0	0,5	19,9			0		
trappola n. 3	0	0,6	19,7			0		
trappola n. 4	0	0,5	20			0		
trappola n. 5	0	0,7	19,7			0		
trappola n. 6	0	0,5	19,9			0		
trappola n. 7	0	0,4	20			0		
trappola n. 8	0	0,4	20			0		
trappola n. 9	0	0,7	19,8			0		
trappola n. 10	0	0,5	19,9			0		
trappola n. 11	0	0,7	19,6			0		
trappola n. 12	0	0,6	19,6			0		
trappola n. 13	0	0,7	19,7			0		
trappola n. 14	0	0,6	19,9			0		
trappola n. 15	0	0,6	19,8			0		
trappola n. 16	0	0,5	20			0		
trappola n. 17	0	0,6	19,7			0		
trappola n. 18	0	0,5	19,9			0		
trappola n. 19	0	0,7	19,6			0		
trappola n. 20	0	0,6	19,8			0		
							•	

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	23/01/2019		Press. Atm.	Mb	938
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,4	20			0		
trappola 101	0	0,4	19,9			0		
trappola 102	0	0,3	20			0		
trappola 103	0	0,5	19,8			0		
trappola 104	0	0,6	19,6			0		
trappola 105	0	0,7	19,6			0		
trappola 106	0	0,4	20			0		
trappola 107	0	0,6	19,7			0		
trappola 108	0	0,2	20,2			0	Ufficio	
trappola 109	0	0,8	19,5			0		
trappola 110	0	0,6	19,8			0		
trappola 111	0	0,7	19,6			0		
trappola 112	0	1,4	19			0		
trappola 113	0	0,7	19,6			0		
trappola 114	0	0,8	19,6			0		
trappola 115	0	0,9	19,4			0		
trappola 116	0	1,2	19,3			0		

Annotazioni : Analisi ore 10.30 C° - 2

anno 2019	Vecchia disca	rica di Mattie		23/01/2019		Press. Atm. M	b	938
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi				-				
trappola n. 1	0	0,7	19,7			0		
trappola n. 2	0	0,6	19,7			0		
trappola n. 3	0	0,6	19,8			0		
trappola n. 4	0	0,7	19,6			0		
trappola n. 5	0	0,6	19,8			0		
trappola n. 6	0	0,7	19,7			0		
trappola n. 7	0	0,6	19,8			0		
trappola n. 8	0	0,5	20			0		
trappola n. 9	0	0,6	19,8			0		
trappola n. 10	0	0,6	19,6			0		
trappola n. 11	0	0,9	19,4			0		
trappola n. 12	0	0,8	19,6			0		
trappola n. 13	0	0,5	20			0		
trappola n. 14	0	0,4	20			0		
trappola n. 15	0	0,8	19,5			0		
trappola n. 16	0	0,6	19,8			0		
trappola n. 17	0	0,8	19,5			0		
trappola n. 18	0	0,7	19,7			0		
trappola n. 19	0	0,9	19,4			0		
trappola n. 20	0	0,8	19,6			0		
			•					
							·	

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	30/01/2019		Press. Atm.	Mb 92	28
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,3	20			0		
trappola 101	0	0,5	20			0		
trappola 102	0	0,4	19,9			0		
trappola 103	0	0,7	19,7			0		
trappola 104	0	0,5	19,9			0		
trappola 105	0	0,5	19,8			0		
trappola 106	0	0,6	19,8			0		
trappola 107	0	0,9	19,4			0		
trappola 108	0	0,1	20,3			0	Ufficio	
trappola 109	0	0,5	19,8			0		
trappola 110	0	0,8	19,6			0		
trappola 111	0	0,5	20			0		
trappola 112	0	1,3	19,2			0		
trappola 113	0	0,6	19,8			0		
trappola 114	0	0,6	19,7			0		
trappola 115	0	0,7	19,7			0		
trappola 116	0	0,9	19,5			0		

Annotazioni : Analisi ore 10.00 C° -1

anno 2019	Vecchia disca	rica di Mattie		30/01/2019		Press. Atm. M	b	928
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,8	19,5			0		
trappola n. 2	0	0,5	20			0		
trappola n. 3	0	0,4	20			0		
trappola n. 4	0	0,5	19,9			0		
trappola n. 5	0	0,5	19,8			0		
trappola n. 6	0	0,6	19,7			0		
trappola n. 7	0	0,8	19,4			0		
trappola n. 8	0	0,7	19,7			0		
trappola n. 9	0	0,5	19,9			0		
trappola n. 10	0	0,7	19,6			0		
trappola n. 11	0	0,7	19,7			0		
trappola n. 12	0	0,6	19,6			0		
trappola n. 13	0	0,7	19,8			0		
trappola n. 14	0	0,6	19,7			0		
trappola n. 15	0	0,7	19,7			0		
trappola n. 16	0	0,8	19,5			0		
trappola n. 17	0	0,8	19,6			0		
trappola n. 18	0	0,5	20			0		
trappola n. 19	0	0,8	19,6			0		
trappola n. 20	0	0,7	19,7			0		

anno 2019	NUOVA DISC	ARICA DI MA	TTIE	06/02/2019		Press. Atm. M	1b
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola 100							
trappola 101							
trappola 102							
trappola 103							
trappola 104							
trappola 105							
trappola 106							
trappola 107							
trappola 108							Ufficio
trappola 109							
trappola 110							
trappola 111							
trappola 112							
trappola 113							
trappola 114							
trappola 115							
trappola 116							
		A 1' - ' 1- ' -					

Annotazioni : Analisi biogas non effettuato causa neve

anno 2019	Vecchia disca	rica di Mattie		06/02/2019		Press. Atm. M	lb
Punti di	CH4 %	CO2 %	02 %	Dp mb	variazioni	lel %	note
analisi							
trappola n. 1							
trappola n. 2							
trappola n. 3							
trappola n. 4							
trappola n. 5							
trappola n. 6							
trappola n. 7							
trappola n. 8							
trappola n. 9							
trappola n. 10							
trappola n. 11							
trappola n. 12							
trappola n. 13							
trappola n. 14							
trappola n. 15							
trappola n. 16							
trappola n. 17							
trappola n. 18							
trappola n. 19							
trappola n. 20							
							·

Annotazioni: Analisi biogas non effettuato per causa neve.

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	13/02/2019		Press. Atm. I	Mb	938
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,4	20			0		
trappola 101	0	0,4	20			0		
trappola 102	0	0,6	19,7			0		
trappola 103	0	0,5	19,7			0		
trappola 104	0	0,7	19,6			0		
trappola 105	0	0,8	19,6			0		
trappola 106	0	0,8	19,5			0		
trappola 107	0	1,4	18,9			0		
trappola 108	0	0,2	20,2			0	Ufficio	
trappola 109	0	0,3	20			0		
trappola 110	0	0,6	19,7			0		
trappola 111	0	0,7	19,7			0		
trappola 112	0	1,9	18,5			0		
trappola 113	0	0,7	19,6			0		
trappola 114	0	0,4	20			0		
trappola 115	0	1,1	19,2			0		
trappola 116	0	1,6	18,6			0		

Annotazioni : Analisi ore 9.30 C° 5

anno 2019	Vecchia disca	rica di Mattie		13/02/2019		Press. Atm. M	b
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola n. 1	0	0,5	20			0	
trappola n. 2	0	0,7	19,5			0	
trappola n. 3	0	0,7	19,6			0	
trappola n. 4	0	0,8	19,5			0	
trappola n. 5	0	0,7	19,7			0	
trappola n. 6	0	0,3	20,1			0	
trappola n. 7	0	0,5	19,9			0	
trappola n. 8	0	0,5	20			0	
trappola n. 9	0	0,4	20			0	
trappola n. 10	0	0,6	19,7			0	
trappola n. 11	0	0,9	19,3			0	
trappola n. 12	0	0,7	19,7			0	
trappola n. 13	0	0,9	19,4			0	
trappola n. 14	0	0,8	19,4			0	
trappola n. 15	0	0,8	19,5			0	
trappola n. 16	0	0,6	19,8			0	
trappola n. 17	0	0,6	19,7			0	
trappola n. 18	0	0,7	19,7			0	
trappola n. 19	0	0,5	19,8			0	
trappola n. 20	0	8,0	19,6			0	

anno 2019	NUOVA DISC	ARICA DI MA	ΓΤΙΕ	20/02/2019		Press. Atm. I	Mb	947
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,4	19,3			0		
trappola 101	0	0,6	19			0		
trappola 102	0	0,4	19,1			0		
trappola 103	0	0,2	19,5			0		
trappola 104	0	0,2	19,4			0		
trappola 105	0	0,4	19,3			0		
trappola 106	0	0,5	19			0		
trappola 107	0	0,8	19,1			0		
trappola 108	0	0,1	19,8			0	Ufficio	
trappola 109	0	0,4	19,3			0		
trappola 110	0	0,5	19,3			0		
trappola 111	0	0,2	19,4			0		
trappola 112	0	1,1	18,7			0		
trappola 113	0	0,4	19,2			0		
trappola 114	0	0,3	19,3			0		
trappola 115	0	0,4	19,3			0		
trappola 116	0	0,6	19,1			0		

Annotazioni : Analisi ore 10.00 C° 4

anno 2019	Vecchia disca	rica di Mattie		20/02/2019		Press. Atm. M	b	947
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,3	19,3			0		
trappola n. 2	0	0,3	19,4			0		
trappola n. 3	0	0,1	19,6			0		
trappola n. 4	0	0,2	19,5			0		
trappola n. 5	0	0,4	19,2			0		
trappola n. 6	0	0,6	19,1			0		
trappola n. 7	0	0,4	19,2			0		
trappola n. 8	0	0,1	19,7			0		
trappola n. 9	0	0,2	19,5			0		
trappola n. 10	0	0,5	19,3			0		
trappola n. 11	0	0,3	19,4			0		
trappola n. 12	0	0,4	19,2			0		
trappola n. 13	0	0,3	19,3			0		
trappola n. 14	0	0,1	19,4			0		
trappola n. 15	0	0,2	19,5			0		
trappola n. 16	0	0,5	19,3			0		
trappola n. 17	0	0,2	19,5			0		
trappola n. 18	0	0,4	19,2			0		
trappola n. 19	0	0,1	19,5			0		
trappola n. 20	0	0,6	19,3			0		

anno 2019	NUOVA DISC	ARICA DI MAT	ΓΤΙΕ	27/02/2019		Press. Atm. I	Mb	945
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,5	19,3			0		
trappola 101	0	0,4	19,3			0		
trappola 102	0	0,3	19,3			0		
trappola 103	0	0,4	19,4			0		
trappola 104	0	0,3	19,5			0		
trappola 105	0	0,5	19,2			0		
trappola 106	0	0,4	19,2			0		
trappola 107	0	0,6	19,1			0		
trappola 108	0	0,2	19,5			0	Ufficio	
trappola 109	0	0,6	19,1			0		
trappola 110	0	0,4	19,2			0		
trappola 111	0	0,3	19,4			0		
trappola 112	0	0,9	18,7			0		
trappola 113	0	0,3	19,3			0		
trappola 114	0	0,4	19,3			0		
trappola 115	0	0,6	19,2			0		
trappola 116	0	0,8	19			0		

Annotazioni : Analisi ore 11.00 C° 4

anno 2019	Vecchia disca	rica di Mattie		27/02/2019		Press. Atm. M	b	945
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,4	19,3			0		
trappola n. 2	0	0,4	19,4			0		
trappola n. 3	0	0,2	19,6			0		
trappola n. 4	0	0,4	19,3			0		
trappola n. 5	0	0,5	19,2			0		
trappola n. 6	0	0,5	19,1			0		
trappola n. 7	0	0,3	19,4			0		
trappola n. 8	0	0,3	19,5			0		
trappola n. 9	0	0,4	19,4			0		
trappola n. 10	0	0,6	19,1			0		
trappola n. 11	0	0,4	19,2			0		
trappola n. 12	0	0,3	19,6			0		
trappola n. 13	0	0,5	19,2			0		
trappola n. 14	0	0,3	19,3			0		
trappola n. 15	0	0,3	19,4			0		
trappola n. 16	0	0,3	19,3			0		
trappola n. 17	0	0,4	19,3			0		
trappola n. 18	0	0,3	19,5			0		
trappola n. 19	0	0,5	19,2			0		
trappola n. 20	0	0,5	19,2			0		

anno 2019	NUOVA DISC	ARICA DI MA	ΓΤΙΕ	06/03/2019		Press. Atm.	Mb 938
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola 100	0	0,4	19,1			0	
trappola 101	0	0,3	19,3			0	
trappola 102	0	0,2	19,4			0	
trappola 103	0	0,5	19,3			0	
trappola 104	0	0,4	19,2			0	
trappola 105	0	0,4	19,3			0	
trappola 106	0	0,5	19,2			0	
trappola 107	0	0,5	19,3			0	
trappola 108	0	0,1	19,6			0	Ufficio
trappola 109	0	0,4	19,4			0	
trappola 110	0	0,6	19,1			0	
trappola 111	0	0,5	19,1			0	
trappola 112	0	0,7	19,1			0	
trappola 113	0	0,5	19,2			0	
trappola 114	0	0,6	19,2			0	
trappola 115	0	0,7	19			0	
trappola 116	0	0,7	19,1			0	
				1			

Annotazioni : Analisi ore 11.30 C° 3

anno 2019	Vecchia disca	rica di Mattie		06/03/2019		Press. Atm. M	b	938
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,3	19,2			0		
trappola n. 2	0	0,4	19,2			0		
trappola n. 3	0	0,3	19,4			0		
trappola n. 4	0	0,3	19,4			0		
trappola n. 5	0	0,4	19,4			0		
trappola n. 6	0	0,3	19,5			0		
trappola n. 7	0	0,4	19,3			0		
trappola n. 8	0	0,5	19,1			0		
trappola n. 9	0	0,6	19,2			0		
trappola n. 10	0	0,5	19,2			0		
trappola n. 11	0	0,5	19,3			0		
trappola n. 12	0	0,4	19,4			0		
trappola n. 13	0	0,4	19,4			0		
trappola n. 14	0	0,5	19,2			0		
trappola n. 15	0	0,4	19,2			0		
trappola n. 16	0	0,2	19,5			0		
trappola n. 17	0	0,3	19,3			0		
trappola n. 18	0	0,5	19,1			0		
trappola n. 19	0	0,6	19,2			0		
trappola n. 20	0	0,7	19,1			0		
							·	

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	13/03/2019		Press. Atm. I	Mb	936
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,3	19,2			0		
trappola 101	0	0,2	19,4			0		
trappola 102	0	0,3	19,3			0		
trappola 103	0	0,4	19,1			0		
trappola 104	0	0,6	19,1			0		
trappola 105	0	0,5	19,1			0		
trappola 106	0	0,4	19,3			0		
trappola 107	0	0,6	19			0		
trappola 108	0	0,2	19,3			0	Ufficio	
trappola 109	0	0,3	19,3			0		
trappola 110	0	0,4	19			0		
trappola 111	0	0,5	19			0		
trappola 112	0	0,6	19			0		
trappola 113	0	0,7	18,8			0		
trappola 114	0	0,4	19,1			0		
trappola 115	0	0,6	19			0		
trappola 116	0	0,5	19,2			0		

Annotazioni : Analisi ore 10.30 C° 5

anno 2019	Vecchia disca	rica di Mattie		13/03/2019		Press. Atm. M	b	936
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,5	19,1			0		
trappola n. 2	0	0,5	19,1			0		
trappola n. 3	0	0,4	19,3			0		
trappola n. 4	0	0,5	19,1			0		
trappola n. 5	0	0,6	19,1			0		
trappola n. 6	0	0,4	19,2			0		
trappola n. 7	0	0,6	19			0		
trappola n. 8	0	0,6	19			0		
trappola n. 9	0	0,4	19,1			0		
trappola n. 10	0	0,6	19			0		
trappola n. 11	0	0,4	19,3			0		
trappola n. 12	0	0,5	19,1			0		
trappola n. 13	0	0,3	19,3			0		
trappola n. 14	0	0,6	19			0		
trappola n. 15	0	0,5	19			0		
trappola n. 16	0	0,3	19,4			0		
trappola n. 17	0	0,5	19,1			0		
trappola n. 18	0	0,3	19,2			0		
trappola n. 19	0	0,7	19			0		
trappola n. 20	0	0,5	19,1			0		
							·	
							·	
							•	

anno 2019	NUOVA DISC	ARICA DI MA	ΓΤΙΕ	20/03/2019		Press. Atm. I	Mb	940
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,2	19,4			0		
trappola 101	0	0,4	19,1			0		
trappola 102	0	0,4	19,2			0		
trappola 103	0	0,6	19			0		
trappola 104	0	0,5	19			0		
trappola 105	0	0,4	19,1			0		
trappola 106	0	0,7	18,8			0		
trappola 107	0	0,7	18,8			0		
trappola 108	0	0,2	19,3			0	Ufficio	
trappola 109	0	0,4	19,2			0		
trappola 110	0	0,6	19			0		
trappola 111	0	0,4	19,1			0		
trappola 112	0	0,8	18,6			0		
trappola 113	0	0,5	19			0		
trappola 114	0	0,6	19			0		
trappola 115	0	0,7	18,8			0		
trappola 116	0	0,9	19,6			0		

Annotazioni : Analisi ore 12.00 C° 6

anno 2019	Vecchia disca	rica di Mattie		20/03/2019		Press. Atm. M	b 9	940
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
nalisi								
rappola n. 1	0	0,4	19,1			0		
rappola n. 2	0	0,6	19			0		
rappola n. 3	0	0,6	19			0		
rappola n. 4	0	0,7	18,9			0		
rappola n. 5	0	0,4	19,1			0		
rappola n. 6	0	0,4	19,3			0		
rappola n. 7	0	0,5	19,1			0		
trappola n. 8	0	0,4	19,1			0		
rappola n. 9	0	0,6	19			0		
trappola n. 10	0	0,5	19			0		
rappola n. 11	0	0,7	18,8			0		
rappola n. 12	0	0,7	18,9			0		
rappola n. 13	0	0,5	19			0		
rappola n. 14	0	0,4	19,2			0		
trappola n. 15	0	0,4	19,2			0		
rappola n. 16	0	0,5	19			0		
rappola n. 17	0	0,3	19,3			0		
rappola n. 18	0	0,5	19,1			0		
rappola n. 19	0	0,6	19			0		
rappola n. 20	0	0,7	18,8			0		

anno 2019	NUOVA DISC	ARICA DI MAT	ΓΤΙΕ	27/03/2019		Press. Atm. I	Mb	946
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,3	19,1			0		
trappola 101	0	0,3	19,2			0		
trappola 102	0	0,2	19,4			0		
trappola 103	0	0,5	19			0		
trappola 104	0	0,6	18,8			0		
trappola 105	0	0,5	19			0		
trappola 106	0	0,5	19			0		
trappola 107	0	0,6	18,9			0		
trappola 108	0	0,1	19,3			0	Ufficio	
trappola 109	0	0,3	19,2			0		
trappola 110	0	0,4	19,1			0		
trappola 111	0	0,5	19,1			0		
trappola 112	0	0,6	18,8			0		
trappola 113	0	0,3	19,1			0		
trappola 114	0	0,4	19,1			0		
trappola 115	0	0,3	19,2			0		
trappola 116	0	0,4	19			0		

Annotazioni : Analisi ore 11.30 C° 7

anno 2019	Vecchia disca	rica di Mattie		27/03/2019		Press. Atm. M	b	946
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,3	19,1			0		
trappola n. 2	0	0,5	19			0		
trappola n. 3	0	0,3	19,1			0		
trappola n. 4	0	0,6	18,9			0		
trappola n. 5	0	0,6	18,8			0		
trappola n. 6	0	0,3	19,2			0		
trappola n. 7	0	0,3	19,1			0		
trappola n. 8	0	0,6	18,9			0		
trappola n. 9	0	0,4	19			0		
trappola n. 10	0	0,4	19			0		
trappola n. 11	0	0,5	19,1			0		
trappola n. 12	0	0,4	19			0		
trappola n. 13	0	0,3	19,2			0		
trappola n. 14	0	0,4	19,1			0		
trappola n. 15	0	0,5	19			0		
trappola n. 16	0	0,4	19			0		
trappola n. 17	0	0,6	19			0		
trappola n. 18	0	0,5	19,1			0		
trappola n. 19	0	0,4	19			0		
trappola n. 20	0	0,6	18,8			0		
							·	
							·	

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	03/04/2019		Press. Atm.	Mb	932
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,5	19			0		
trappola 101	0	0,4	19			0		
trappola 102	0	0,3	19,2			0		
trappola 103	0	0,4	19,2			0		
trappola 104	0	0,5	19			0		
trappola 105	0	0,6	18,9			0		
trappola 106	0	0,7	18,7			0		
trappola 107	0	0,9	19,6			0		
trappola 108	0	0,2	19,3			0	Ufficio	
trappola 109	0	0,5	19			0		
trappola 110	0	0,6	19			0		
trappola 111	0	0,3	19,2			0		
trappola 112	0	0,8	19,7			0		
trappola 113	0	0,6	18,7			0		
trappola 114	0	0,6	18,8			0		
trappola 115	0	0,5	19			0		
trappola 116	0	0,5	19,1			0		
					1			
							 	

Annotazioni : Analisi ore 9.30 C° 6

anno 2019	Vecchia disca	rica di Mattie		03/04/2019		Press. Atm. M	b	932
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,5	19			0		
trappola n. 2	0	0,6	18,8			0		
trappola n. 3	0	0,5	19			0		
trappola n. 4	0	0,4	19,2			0		
trappola n. 5	0	0,7	18,7			0		
trappola n. 6	0	0,5	19,1			0		
trappola n. 7	0	0,4	19			0		
trappola n. 8	0	0,4	19,1			0		
trappola n. 9	0	0,7	18,8			0		
trappola n. 10	0	0,6	18,8			0		
trappola n. 11	0	0,4	19,1			0		
trappola n. 12	0	0,6	18,9			0		
trappola n. 13	0	0,5	19			0		
trappola n. 14	0	0,6	18,8			0		
trappola n. 15	0	0,3	19,2			0		
trappola n. 16	0	0,6	18,8			0		
trappola n. 17	0	0,5	19			0		
trappola n. 18	0	0,8	18,5			0		
trappola n. 19	0	0,5	19			0		
trappola n. 20	0	0,7	18,8			0		
								-

anno 2019	NUOVA DISC	ARICA DI MAT	ΓΤΙΕ	10/04/2019		Press. Atm.	Mb	930
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,6	18,8			0		
trappola 101	0	0,4	19,1			0		
trappola 102	0	0,3	19,1			0		
trappola 103	0	0,6	18,9			0		
trappola 104	0	0,6	18,8			0		
trappola 105	0	0,4	19,1			0		
trappola 106	0	0,8	18,6			0		
trappola 107	0	1,1	18,3			0		
trappola 108	0	0,2	19,2			0	Ufficio	
trappola 109	0	0,6	18,9			0		
trappola 110	0	0,8	18,6			0		
trappola 111	0	0,5	19			0		
trappola 112	0	1,2	18,3			0		
trappola 113	0	0,7	18,6			0		
trappola 114	0	0,4	19			0		
trappola 115	0	0,8	18,5			0		
trappola 116	0	0,9	18,5			0		

Annotazioni : Analisi ore 12.30 C° 10

anno 2019	Vecchia disca	rica di Mattie		10/04/2019		Press. Atm. M	b 930
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola n. 1	0	0,7	18,6			0	
trappola n. 2	0	0,7	18,7			0	
trappola n. 3	0	0,6	19			0	
trappola n. 4	0	0,6	18,9			0	
trappola n. 5	0	0,5	19			0	
trappola n. 6	0	0,5	19			0	
trappola n. 7	0	0,6	18,8			0	
trappola n. 8	0	0,6	18,8			0	
trappola n. 9	0	0,5	19			0	
trappola n. 10	0	0,7	18,7			0	
trappola n. 11	0	0,6	18,9			0	
trappola n. 12	0	0,6	18,9			0	
trappola n. 13	0	0,5	19,1			0	
trappola n. 14	0	0,8	18,6			0	
trappola n. 15	0	0,5	18,9			0	
trappola n. 16	0	0,4	19,1			0	
trappola n. 17	0	0,7	18,6			0	
trappola n. 18	0	0,6	18,8			0	
trappola n. 19	0	0,7	18,6			0	
trappola n. 20	0	0,6	18,9			0	

INCO VA DIGO	ARICA DI MAT	IIIE	17/04/2019		Press. Atm. N	Лb	946
CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
0	0,5	19,1			0		
0	1,2	18,4			0		
0	0,4	19,1			0		
0	0,2	19,3			0		
0	0,1	19,3			0		
0	0,6	19			0		
0	0,6	19			0		
0	0,4	19,2			0		
0	0,1	19,4			0	Ufficio	
0	0,7	18,9			0		
0	0,2	19,4			0		
0	0,9	18,7			0		
0	1,2	18,5			0		
0	0,5	19,1			0		
0	0,5	18,9			0		
0	0,7	18,9			0		
0	0,6	19			0		
	0 0 0 0 0 0 0 0 0 0	0 0,5 0 1,2 0 0,4 0 0,2 0 0,1 0 0,6 0 0,6 0 0,4 0 0,1 0 0,7 0 0,2 0 0,9 0 1,2 0 0,5 0 0,5 0 0,6	0 0,5 19,1 0 1,2 18,4 0 0,4 19,1 0 0,2 19,3 0 0,1 19,3 0 0,6 19 0 0,6 19 0 0,4 19,2 0 0,1 19,4 0 0,7 18,9 0 0,2 19,4 0 0,9 18,7 0 1,2 18,5 0 0,5 19,1 0 0,5 18,9 0 0,7 18,9 0 0,6 19	0 0,5 19,1 0 1,2 18,4 0 0,4 19,1 0 0,5 19,3 0 0,6 19 0 0,6 19 0 0,4 19,2 0 0,1 19,4 0 0,7 18,9 0 0,2 19,4 0 0,9 18,7 0 1,2 18,5 0 0,5 19,1 0 0,5 18,9 0 0,7 18,9 0 0,5 18,9 0 0,7 18,9 0 0,5 19,1 0 0,5 18,9 0 0,7 18,9	0 0,5 19,1 0 1,2 18,4 0 0,4 19,1 0 0,2 19,3 0 0,1 19,3 0 0,6 19 0 0,6 19 0 0,4 19,2 0 0,1 19,4 0 0,7 18,9 0 0,2 19,4 0 0,9 18,7 0 1,2 18,5 0 0,5 19,1 0 0,7 18,9 0 0,6 19	0 0,5 19,1 0 0 1,2 18,4 0 0 0,4 19,1 0 0 0,4 19,1 0 0 0,2 19,3 0 0 0,1 19,3 0 0 0,6 19 0 0 0,6 19 0 0 0,4 19,2 0 0 0,4 19,2 0 0 0,1 19,4 0 0 0,7 18,9 0 0 0,2 19,4 0 0 0,9 18,7 0 0 0,5 19,1 0 0 0,5 19,1 0 0 0,6 19 0	0 0,5 19,1 0 0 1,2 18,4 0 0 0,4 19,1 0 0 0,4 19,1 0 0 0,2 19,3 0 0 0,6 19 0 0 0,6 19 0 0 0,6 19 0 0 0,4 19,2 0 0 0,4 19,2 0 0 0,1 19,4 0 Ufficio 0 0,7 18,9 0 0 0 0,2 19,4 0 0 0 0,9 18,7 0 0 0 0,5 19,1 0 0 0 0,5 18,9 0 0 0 0,6 19 0 0

Annotazioni : Analisi ore 10.00 C° 12

anno 2019	Vecchia disca	rica di Mattie		17/04/2019		Press. Atm. M	b	946
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,5	19			0		
trappola n. 2	0	0,4	19			0		
trappola n. 3	0	0,4	19,1			0		
trappola n. 4	0	0,5	19			0		
trappola n. 5	0	0,7	18,8			0		
trappola n. 6	0	0,6	18,8			0		
trappola n. 7	0	0,4	19,2			0		
trappola n. 8	0	0,5	19,1			0		
trappola n. 9	0	0,3	19,2			0		
trappola n. 10	0	0,6	18,7			0		
trappola n. 11	0	0,8	18,8			0		
trappola n. 12	0	0,3	19,1			0		
trappola n. 13	0	0,3	19,1			0		
trappola n. 14	0	0,6	18,8			0		
trappola n. 15	0	0,4	19,1			0		
trappola n. 16	0	0,7	18,7			0		
trappola n. 17	0	0,5	19			0		
trappola n. 18	0	0,4	19			0		
trappola n. 19	0	0,5	18,8			0		
trappola n. 20	0	0,8	18,6			0		
							•	

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	24/04/2019		Press. Atm.	Mb	934
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,5	19			0		
trappola 101	0	0,9	18,4			0		
trappola 102	0	0,5	19			0		
trappola 103	0	0,4	19			0		
trappola 104	0	0,3	19,2			0		
trappola 105	0	0,7	18,8			0		
trappola 106	0	0,4	19			0		
trappola 107	0	0,8	19,5			0		
trappola 108	0	0,2	19,2			0	Ufficio	
trappola 109	0	0,5	19			0		
trappola 110	0	0,4	19,2			0		
trappola 111	0	0,7	18,6			0		
trappola 112	0	1	18,4			0		
trappola 113	0	0,6	18,9			0		
trappola 114	0	0,7	18,7			0		
trappola 115	0	0,8	18,7			0		
trappola 116	0	0,9	18,5			0		
							-	

Annotazioni : Analisi ore 11.00 C° 8

anno 2019	Vecchia disca	rica di Mattie		24/04/2019		Press. Atm. M	b	934
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,4	19			0		
trappola n. 2	0	0,6	18,9			0		
trappola n. 3	0	0,6	19			0		
trappola n. 4	0	0,6	18,7			0		
trappola n. 5	0	0,5	19			0		
trappola n. 6	0	0,4	19,1			0		
trappola n. 7	0	0,6	18,7			0		
trappola n. 8	0	0,6	18,8			0		
trappola n. 9	0	0,5	19			0		
trappola n. 10	0	0,5	19			0	·	
trappola n. 11	0	0,7	18,7			0		
trappola n. 12	0	0,6	18,7			0		
trappola n. 13	0	0,5	19			0		
trappola n. 14	0	0,4	19,2			0		
trappola n. 15	0	0,6	18,8			0		
trappola n. 16	0	0,9	18,4			0		
trappola n. 17	0	0,7	18,8			0		
trappola n. 18	0	0,6	18,8			0		
trappola n. 19	0	0,7	18,6			0		
trappola n. 20	0	0,7	18,7			0		
							<u> </u>	
							•	

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	02/05/2019		Press. Atm.	Mb	936
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,6	18,7			0		
trappola 101	0	0,7	18,7			0		
trappola 102	0	0,3	19,2			0		
trappola 103	0	0,6	18,8			0		
trappola 104	0	0,5	19			0		
trappola 105	0	0,5	19			0		
trappola 106	0	0,6	18,8			0		
trappola 107	0	0,9	18,5			0		
trappola 108	0	0,2	19,1			0	Ufficio	
trappola 109	0	0,6	18,7			0		
trappola 110	0	0,6	18,8			0		
trappola 111	0	0,5	19			0		
trappola 112	0	0,8	18,5			0		
trappola 113	0	0,7	18,7			0		
trappola 114	0	0,5	19			0		
trappola 115	0	0,6	18,6			0		
trappola 116	0	0,8	18,5			0		

Annotazioni : Analisi ore 11 C° 10

	Vecchia disca			02/05/2019		Press. Atm. M	b 936
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
nalisi							
	^	0.0	10.0			^	
rappola n. 1	0	0,3	19,2			0	
rappola n. 2	0	0,4	19,2			0	
rappola n. 3	0	0,6	18,9			0	
rappola n. 4	0	0,3	19,3			0	
rappola n. 5	0	0,7	18,6			0	
rappola n. 6	0	0,6	18,8			0	
trappola n. 7	0	0,4	19,1			0	
trappola n. 8	0	0,4	19			0	
trappola n. 9	0	0,3	19,2			0	
trappola n. 10	0	0,3	19,1			0	
rappola n. 11	0	0,5	19			0	
rappola n. 12	0	0,8	18,6			0	
trappola n. 13	0	0,7	18,7			0	
trappola n. 14	0	0,5	19			0	
trappola n. 15	0	0,5	19			0	
trappola n. 16	0	0,7	18,6			0	
rappola n. 17	0	0,5	18,9			0	
rappola n. 18	0	0,4	19			0	
trappola n. 19	0	0,6	18,8			0	
rappola n. 20	0	0,7	18,6			0	

o 2019 NUOVA DISCARICA I		CA DI MATTIE 09/05/2019			Press. Atm. Mb		932
CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
0	0,4	19			0		
0	0,5	19			0		
0	0,4	19,1			0		
0	0,7	18,7			0		
0	0,6	18,7			0		
0	0,7	18,7			0		
0	0,4	19			0		
0	1,2	18,2			0		
0	0,2	19,3			0	Ufficio	
0	0,4	19			0		
0	0,7	18,6			0		
0	0,6	18,8			0		
0	0,9	18,6			0		
0	0,6	18,7			0		
0	0,6	18,6			0		
0	0,9	18,5			0		
0	1,4	18,1			0		
	CH4 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CH4 % CO2 % 0 0,4 0 0,5 0 0,4 0 0,7 0 0,6 0 0,7 0 0,4 0 1,2 0 0,2 0 0,4 0 0,7 0 0,6 0 0,9 0 0,6 0 0,9 0 0,6 0 0,9 0 1,4	0 0,4 19 0 0,5 19 0 0,4 19,1 0 0,7 18,7 0 0,6 18,7 0 0,7 18,7 0 0,4 19 0 1,2 18,2 0 0,2 19,3 0 0,4 19 0 0,7 18,6 0 0,6 18,8 0 0,9 18,6 0 0,6 18,7 0 0,6 18,6 0 0,9 18,5 0 1,4 18,1	CH4 % CO2 % O2 % Dp mb 0 0,4 19 0 0,5 19 0 0,4 19,1 0 0,7 18,7 0 0,6 18,7 0 0,6 18,7 0 0,4 19 0 0,4 19 0 0,2 19,3 0 0,4 19 0 0,7 18,6 0 0,6 18,8 0 0,9 18,6 0 0,9 18,6 0 0,6 18,7 0 0,6 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0 0,9 18,6 0	CH4 % CO2 % O2 % Dp mb variazioni 0 0,4 19 0 0,5 19 0 0,0 19,1 0 0,0 18,7 0 0,6 18,7 0 0,6 18,7 0 0,7 18,7 0 0,4 19 0 1,2 18,2 0 0,2 19,3 0 0,4 19 0 0,4 19 0 0,7 18,6 0 0,7 18,6 0 0,6 18,8 0 0,9 18,6 0 0,9 18,6 0 0,6 18,7 0 0,6 18,6 0 0,9 18,5 0 0 1,4 18,1 18,1 1 1,4 18,1 1 1,4 18,1 1 1,4 18,1 1 1,4 18,1 1 1,4 18,1 1 1,4 18,1 1 1,4 18,1 1 1,4 1,4 1,4 1,4 1,4	CH4 % CO2 % O2 % Dp mb variazioni lel % 0 0,4 19 0 0 0,5 19 0 0 0,4 19,1 0 0 0,7 18,7 0 0 0,6 18,7 0 0 0,4 19 0 0 0,2 19,3 0 0 0,4 19 0 0 0,4 19 0 0 0,4 19 0 0 0,7 18,6 0 0 0,7 18,6 0 0 0,6 18,8 0 0 0,6 18,7 0 0 0,6 18,6 0 0 0,6 18,6 0 0 0,6 18,6 0 0 0,9 18,5 0 0 1,4 18,1 0 <	CH4 % CO2 % Dp mb variazioni lel % note 0 0,4 19 0 <

Annotazioni : Analisi ore 10.00 C° 9

anno 2019	Vecchia disca	rica di Mattie		09/05/2019		Press. Atm. M	b	932
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi				-				
trappola n. 1	0	0,5	19			0		
trappola n. 2	0	0,5	19,1			0		
trappola n. 3	0	0,4	19,1			0		
trappola n. 4	0	0,6	18,8			0		
trappola n. 5	0	0,6	18,7			0		
trappola n. 6	0	0,7	18,7			0		
trappola n. 7	0	0,6	18,9			0		
trappola n. 8	0	0,5	19			0		
trappola n. 9	0	0,5	19			0		
trappola n. 10	0	0,6	18,7			0		
trappola n. 11	0	0,7	18,7			0		
trappola n. 12	0	0,6	18,8			0		
trappola n. 13	0	0,5	19			0		
trappola n. 14	0	0,5	18,9			0		
trappola n. 15	0	0,3	19,1			0		
trappola n. 16	0	0,6	18,8			0		
trappola n. 17	0	0,6	18,9			0		
trappola n. 18	0	0,5	19			0		
trappola n. 19	0	0,4	19			0		
trappola n. 20	0	0,6	18,9			0		
							·	

anno 2019	NUOVA DISC	ARICA DI MA	TTIE	15/05/2019		Press. Atm. N	Иb	930
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,3	19			0		
trappola 101	0	0,3	19			0		
trappola 102	0	0,4	19,1			0		
trappola 103	0	0,5	18,8			0		
trappola 104	0	0,4	19			0		
trappola 105	0	0,5	19			0		
trappola 106	0	0,6	18,7			0		
trappola 107	0	0,9	18,4			0		
trappola 108	0	0,1	19,3			0	Ufficio	
trappola 109	0	0,6	18,8			0		
trappola 110	0	0,4	19			0		
trappola 111	0	0,5	18,8			0		
trappola 112	0	0,6	18,9			0		
trappola 113	0	0,3	19,1			0		
trappola 114	0	0,3	19,2			0		
trappola 115	0	0,7	19,7			0		
trappola 116	0	1,1	18,2			0		

Annotazioni : Analisi ore 9.30 C° 10

anno 2019	Vecchia disca	rica di Mattie		15/05/2019		Press. Atm. M	b	930
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,3	19,1			0		
trappola n. 2	0	0,4	19,1			0		
trappola n. 3	0	0,6	18,7			0		
trappola n. 4	0	0,5	19			0		
trappola n. 5	0	0,5	19,1			0		
trappola n. 6	0	0,6	18,8			0	•	
trappola n. 7	0	0,3	19			0		
trappola n. 8	0	0,3	19			0		
trappola n. 9	0	0,4	19,1			0		
trappola n. 10	0	0,3	19,1			0		
trappola n. 11	0	0,6	18,7			0		
trappola n. 12	0	0,4	19			0		
trappola n. 13	0	0,4	19			0		
trappola n. 14	0	0,6	18,8			0		
trappola n. 15	0	0,2	19,3			0		
trappola n. 16	0	0,2	19,2			0		
trappola n. 17	0	0,3	19,1			0		
trappola n. 18	0	0,6	18,8			0		
trappola n. 19	0	0,6	18,7			0		
trappola n. 20	0	0,8	18,5			0		
							·	
							•	

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	22/05/2019		Press. Atm. I	Mb	941
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,6	19,3			0		
trappola 101	0	0,6	18,9			0		
trappola 102	0	0,4	19,1			0		
trappola 103	0	0,5	19,2			0		
trappola 104	0	0,2	19,3			0		
trappola 105	0	1	18,6			0		
trappola 106	0	0,6	19			0		
trappola 107	0	1	18,4			0		
trappola 108	0	0,2	19,3			0	Ufficio	
trappola 109	0	0,6	19,1			0		
trappola 110	0	0,5	19,1			0		
trappola 111	0	0,6	19			0		
trappola 112	0	0,5	19,2			0		
trappola 113	0	0,5	19,1			0		
trappola 114	0	0,2	19,3			0		
trappola 115	0	0,8	18,7			0		
trappola 116	0	0,4	19,2			0		

Annotazioni : Analisi ore 10.00 C° 16

anno 2019	Vecchia disca	rica di Mattie		22/05/2019		Press. Atm. M	b	941
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,6	19			0		
trappola n. 2	0	0,5	18,9			0		
trappola n. 3	0	0,5	19			0		
trappola n. 4	0	0,7	18,8			0		
trappola n. 5	0	0,6	18,8			0		
trappola n. 6	0	0,7	18,7			0		
trappola n. 7	0	0,6	19			0		
trappola n. 8	0	0,5	19			0		
trappola n. 9	0	0,6	18,8			0		
trappola n. 10	0	0,5	19,2			0		
trappola n. 11	0	0,5	19,2			0		
trappola n. 12	0	0,7	18,8			0		
trappola n. 13	0	0,5	19,1			0		
trappola n. 14	0	0,5	19			0		
trappola n. 15	0	0,4	19,2			0		
trappola n. 16	0	0,3	19,2			0		
trappola n. 17	0	0,5	19,1			0		
trappola n. 18	0	0,4	19,1			0		
trappola n. 19	0	0,7	18,7			0		
trappola n. 20	0	0,6	19			0		
							·	

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	29/05/2019		Press. Atm. I	Mb	942
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,4	19			0		
trappola 101	0	0,3	19,2			0		
trappola 102	0	0,6	18,8			0		
trappola 103	0	0,5	19			0		
trappola 104	0	0,3	19,2			0		
trappola 105	0	0,8	18,5			0		
trappola 106	0	0,6	19			0		
trappola 107	0	0,9	18,6			0		
trappola 108	0	0,2	19,2			0	Ufficio	
trappola 109	0	0,7	18,7			0		
trappola 110	0	0,6	18,8			0		
trappola 111	0	0,4	19,1			0		
trappola 112	0	0,7	18,6			0		
trappola 113	0	0,6	18,8			0		
trappola 114	0	0,3	19,1			0		
trappola 115	0	0,6	18,9			0		
trappola 116	0	0,6	18,9			0		
				1				

Annotazioni : Analisi ore 12.30 C° 15

anno 2019	Vecchia disca	rica di Mattie		29/05/2019		Press. Atm. M	b 942
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
rappola n. 1	0	0,4	19,1			0	
rappola n. 2	0	0,4	19			0	
rappola n. 3	0	0,7	18,6			0	
rappola n. 4	0	0,5	19			0	
rappola n. 5	0	0,5	19			0	
rappola n. 6	0	0,4	19,2			0	
trappola n. 7	0	0,5	19			0	
rappola n. 8	0	0,3	19,2			0	
trappola n. 9	0	0,4	19,2			0	
trappola n. 10	0	0,7	18,7			0	
rappola n. 11	0	0,6	18,8			0	
rappola n. 12	0	0,6	18,8			0	
rappola n. 13	0	0,7	18,8			0	
rappola n. 14	0	0,3	19,1			0	
trappola n. 15	0	0,6	18,7			0	
rappola n. 16	0	0,5	19			0	
rappola n. 17	0	0,6	18,8			0	
rappola n. 18	0	0,6	19			0	
rappola n. 19	0	0,5	19			0	
rappola n. 20	0	0,7	18,7			0	

Annotazioni: Analisi ore 11.00 C° 15

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	05/06/2019		Press. Atm.	Mb 94	10
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,3	19			0		
trappola 101	0	0,2	19,2			0		
trappola 102	0	0,4	19			0		
trappola 103	0	0,6	19			0		
trappola 104	0	0,5	18,8			0		
trappola 105	0	0,6	18,6			0		
trappola 106	0	0,5	19			0		
trappola 107	0	1,2	18,2			0		
trappola 108	0	0,1	19,3			0	Ufficio	
trappola 109	0	0,4	19,1			0		
trappola 110	0	0,8	18,7			0		
trappola 111	0	0,5	18,9			0		
trappola 112	0	0,8	18,6			0		
trappola 113	0	0,4	19			0		
trappola 114	0	0,4	19,1			0		
trappola 115	0	0,8	18,5			0		
trappola 116	0	0,7	18,7			0		

Annotazioni : Analisi ore 11.30 C° 19

anno 2019	Vecchia disca	rica di Mattie		05/06/2019		Press. Atm. M	b	940
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,6	18,8			0		
trappola n. 2	0	0,5	19			0		
trappola n. 3	0	0,5	18,9			0		
trappola n. 4	0	0,7	18,6			0		
trappola n. 5	0	0,3	19,1			0		
trappola n. 6	0	0,6	18,8			0		
trappola n. 7	0	0,3	19			0		
trappola n. 8	0	0,3	19,1			0		
trappola n. 9	0	0,6	18,7			0		
trappola n. 10	0	0,5	19			0		
trappola n. 11	0	0,5	19			0		
trappola n. 12	0	0,3	19,1			0		
trappola n. 13	0	0,5	18,8			0		
trappola n. 14	0	0,4	19			0		
trappola n. 15	0	0,4	19			0		
trappola n. 16	0	0,2	19,2			0		
trappola n. 17	0	0,4	19,1			0		
trappola n. 18	0	0,3	19,2			0		
trappola n. 19	0	0,7	18,7			0		
trappola n. 20	0	0,6	18,7			0		

Annotazioni: Analisi ore 10 C° 19

anno 2019	NUOVA DISC	ARICA DI MAT	ΓΤΙΕ	12/06/2019		Press. Atm. N	Лb	939
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,5	18,9			0		
trappola 101	0	0,4	19,1			0		
trappola 102	0	0,5	18,8			0		
trappola 103	0	0,7	18,7			0		
trappola 104	0	0,6	18,7			0		
trappola 105	0	0,5	19			0		
trappola 106	0	0,7	18,6			0		
trappola 107	0	1,4	17,9			0		
trappola 108	0	0,2	19,1			0	Ufficio	
trappola 109	0	0,5	19			0		
trappola 110	0	0,6	18,7			0		
trappola 111	0	0,6	18,8			0		
trappola 112	0	0,6	18,8			0		
trappola 113	0	0,5	19			0		
trappola 114	0	0,4	19			0		
trappola 115	0	1,1	18,4			0		
trappola 116	0	0,9	18,4			0		

Annotazioni : Analisi ore 12.00 C° 17

anno 2019	Vecchia disca	rica di Mattie		12/06/2019		Press. Atm. M	b	939
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,8	18,6			0		
trappola n. 2	0	0,7	18,6			0		
trappola n. 3	0	0,7	18,6			0		
trappola n. 4	0	0,5	19			0		
trappola n. 5	0	0,5	18,9			0		
trappola n. 6	0	0,4	19			0		
trappola n. 7	0	0,4	19,1			0		
trappola n. 8	0	0,5	18,8			0		
trappola n. 9	0	0,3	19,1			0		
trappola n. 10	0	0,6	18,7			0		
trappola n. 11	0	0,7	18,7			0		
trappola n. 12	0	0,5	18,9			0		
trappola n. 13	0	0,7	18,7			0		
trappola n. 14	0	0,6	18,7			0		
trappola n. 15	0	0,5	19			0		
trappola n. 16	0	0,4	19			0		
trappola n. 17	0	0,6	18,8			0		
trappola n. 18	0	0,5	19			0		
trappola n. 19	0	0,5	18,9			0		
trappola n. 20	0	0,7	18,6			0		
							·	

Annotazioni: Analisi ore 10.30 C° 17

anno 2019	NUOVA DISC	ARICA DI MAT	TTIE	19/06/2019		Press. Atm. I	Mb	942
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,3	19			0		
trappola 101	0	0,4	19			0		
trappola 102	0	0,3	19,1			0		
trappola 103	0	0,6	18,9			0		
trappola 104	0	0,7	18,7			0		
trappola 105	0	0,6	18,7			0		
trappola 106	0	0,5	19			0		
trappola 107	0	1,1	18,2			0		
trappola 108	0	0,2	19,1			0	Ufficio	
trappola 109	0	0,3	19			0		
trappola 110	0	0,5	18,9			0		
trappola 111	0	0,5	19			0		
trappola 112	0	0,8	18,7			0		
trappola 113	0	0,7	18,6			0		
trappola 114	0	0,6	18,6			0		
trappola 115	0	0,7	18,7			0		
trappola 116	0	0,6	18,6			0	1	

Annotazioni : Analisi ore 10 C° 22

anno 2019	Vecchia disca	rica di Mattie		19/06/2019		Press. Atm. M	b	942
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,5	19			0		
trappola n. 2	0	0,4	19			0		
trappola n. 3	0	0,6	18,7			0		
trappola n. 4	0	0,6	18,6			0		
trappola n. 5	0	0,3	19,1			0		
trappola n. 6	0	0,5	19			0		
trappola n. 7	0	0,6	18,7			0		
trappola n. 8	0	0,7	18,7			0		
trappola n. 9	0	0,4	19,1			0		
trappola n. 10	0	0,4	19			0	·	
trappola n. 11	0	0,5	19			0		
trappola n. 12	0	0,7	18,6			0		
trappola n. 13	0	0,5	18,9			0		
trappola n. 14	0	0,6	18,8			0		
trappola n. 15	0	0,6	18,7			0		
trappola n. 16	0	0,5	19			0		
trappola n. 17	0	0,4	18,9			0		
trappola n. 18	0	0,7	18,7			0		
trappola n. 19	0	0,3	19,2			0		
trappola n. 20	0	0,6	18,7			0		
							·	
							·	
							·	

Annotazioni: Analisi ore 11.30 C° 22

anno 2019	NUOVA DISC	ARICA DI MA	TTIE	26/06/2019		Press. Atm. I	Mb	950
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100	0	0,5	19			0		
trappola 101	0	0,3	19,1			0		
trappola 102	0	0,3	19,2			0		
trappola 103	0	0,4	19			0		
trappola 104	0	0,9	18,5			0		
trappola 105	0	0,5	18,8			0		
trappola 106	0	0,5	18,9			0		
trappola 107	0	1	18,3			0		
trappola 108	0	0,2	19,2			0	Ufficio	
trappola 109	0	0,6	18,6			0		
trappola 110	0	0,6	18,8			0		
trappola 111	0	0,9	18,7			0		
trappola 112	0	0,4	19,1			0		
trappola 113	0	0,6	18,7			0		
trappola 114	0	0,8	18,5			0		
trappola 115	0	1,3	18,3			0		
trappola 116	0	0,5	18,9			0		

Annotazioni : Analisi ore 11.30 C° 27

anno 2019	Vecchia disca	rica di Mattie		26/06/2019		Press. Atm. M	b	950
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola n. 1	0	0,7	18,7			0		
trappola n. 2	0	0,6	18,8			0		
trappola n. 3	0	0,6	18,7			0		
trappola n. 4	0	0,8	18,5			0		
trappola n. 5	0	0,6	18,8			0		
trappola n. 6	0	0,7	18,7			0		
trappola n. 7	0	0,8	18,6			0		
trappola n. 8	0	0,5	19			0		
trappola n. 9	0	0,5	19			0		
trappola n. 10	0	0,6	18,7			0		
trappola n. 11	0	0,7	18,7			0		
trappola n. 12	0	0,6	18,9			0		
trappola n. 13	0	0,7	18,7			0		
trappola n. 14	0	0,4	19			0		
trappola n. 15	0	0,4	18,9			0		
trappola n. 16	0	0,6	18,7			0		
trappola n. 17	0	0,6	18,9			0		
trappola n. 18	0	0,9	18,4			0		
trappola n. 19	0	0,7	18,6			0		
trappola n. 20	0	0,7	18,7			0		

Annotazioni: Analisi ore 12.30 C° 27

C1

C2

Dopo:

41,3

25,4

CH4

38,4

1,7

4,2

 O_2

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:
Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

		T			Ia		ı					I			I.a				
SST	Γ1	data: 29/0			Ora 9:00		Meteo: se	ereno		SS'	Γ2	data: 29/0			Ora: 10:0		Meteo: se	ereno	
		T atm =	0,0		P atm = 9	29						T atm =	1,5		P atm = 9	29			
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>				<u>Portata</u>	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P	<u>D/P</u> <u>P</u>	
1 I IIIIa.	38,2	0,4	31,2	10	1,6		-250		67	1 I IIIIa.	37,4	1,8 32,3 7		7	1,9		-253		55
POZZO	CH_4	02	CO2	CO	T°C	D/P	D/P	D/P	A, C, P,T	POZZO	CH4	O_2	CO_2	CO	T°C	D/P	D/P	D/P	A, C, P,T
10220	0.1.4	Ŭ-	002			prima	finale	pozzo	11, 0, 1,1	1 0220	0111	- 2	2			prima	finale	pozzo	11, 0, 1,1
A3 bis	22,4	4,4	20,1	2	0,8	-22	-22	-10	P	В9	57,2	0,4	38,7	10	2,8	-251	-251	-234	P
A2 bis	20,1	3,4	18,4	1	0,7	-40	-22	-12	P	B13	30,1	1,4	26,2	8	1,1	-33	-33	-15	P
A1	32,2	2,6	30,7	2	1,1	-45	-45	-29	P	В6	47,7	3,4	38,2	12	2,5	-230	-230	-207	P
A3	39,1	0,6	37,4	12	1,7	-55	-60	-43	P	B1	29,4	2,8	26,2	4	0,8	-25	-25	-11	P
A4	33,2	0,2	30,6	9	1,2	-200	-200	-180	P	B10 bis	44,7	3,9	36,2	16	2,7	-28	-28	-13	P
A4 bis	31,1	0,1	29,8	8	1,0	-190	-190	-168	P	B5	48,2	1,8	37,6	10	2,6	-19	-40	-22	P
A2	32,4	0,4	30,1	4	1,2	-201	-201	-183	P	B12	34,5	1,8	32,6	8	1,5	-51	-51	-35	P
A5	44,6	0,2	37,4	15	2,1	-252	-252	-234	A	B10	54,7	1,6	39,8	9	3,1	-252	-252	-236	A
										В8	26,4	2,7	25,2	6	1,7	-163	-163	-146	P
A5 bis	33,4	2,6	31,7	4	1,1	-249	-249	-230	A	В7	36,4	2,8	34,1	4	1,9	-133	-133	-119	P
A6	30,4	4,1	29,8	6	0,9	-28	-28	-13	P	B11	33,1	1,1	30,2	8	1,3	-141	-141	-123	P
A7	40,8	3,2	27,4	10	1,7	-252	-252	-233	A	Dopo:	<u>CH4</u>	<u>O2</u>	34,1	<u>CO</u>	<u>T°C</u>		D/P		Portata
A9	60,1	0,2	40,3	12	2,8	-251	-251	-231	A		37,9	1,7	32,4	6	1,9		-240		54
A10	34,3	0,4	32,1	7	1,2	-35	-35	-13	P										
A8	61,7	0,1	41,2	13	2,5	-252	-252	-236	A										

 $D/P = Depressione (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-237

-15

Α

P

Portata

64

Portata = portata biogas (m 3 /h); C = chiuso; P = parzializzato A = tutto aperto T = in torcia

34,6

23,6

CO2

31,6

2

CO

11

1,6

1,4

 $\mathrm{T}^{\circ}\mathrm{C}$

1,7

-251

-45

-251

-30

D/P

253

FIRMA OPERATORE

asja:biz

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002

Data Emissione 22/11/2008

Revisione 4

LOT			29/01/2	2019	Ora 9	:45	Meteo	o, ser	eno	DREN	I SX	data:	29/01/2	2019	Ora 1		Meteo	: sere	eno
VECC	HIO	T atm	= 3,	5	P atm	= 929	1110000	, oci	CHO	DIVER	1 011	T atm	1 = 4,	5	P atm	= 929	1110000	, bore	,110
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathrm{T}^{\circ}\mathrm{C}}$		<u>D/P</u>		$\frac{\text{Portat}}{\underline{a}}$	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathbf{T}^{\circ}\mathbf{C}}$		<u>D/P</u>		Portata
,	0,2	19,0	0,2	0	1,5		0		0		35,4	1,9	30,4	4	2,8		-242		2
						D/P	D/P	D/P	A C							D/P	D/P	D/P	
POZZO	CH_4	O_2	CO_2	СО	т°С	prima	finale	pozz o	A, C, P,T	POZZO	CH_4	O_2	CO_2	СО	т°С	prima	finale	pozzo	A, C, P,T
P1	0,2	16,6	0,3	0	1,1	0	0	0	T	В3	25,6	3,8	24,2	5	2,6	-51	-51	-38	A
P2	0,2	18,9	0,5	0	1,2	0	0	0	T	B2	38,6	2,5	32,1	4	2,6	-243	-243	-235	A
D1	0,6	19,0	0,2	0	1,1	0	0		T	B 4	44,5	1,7	36,2	4	2,8	-241	-241	-237	A
D2	1,3	17,5	0,4	1	1,0	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata
D3	0,2	19,2	0,0	0	1,5	0	0		T		35,4	1,9	30,4	4	2,8		-242		2
D 4	0,2	19,1	0,1	0	1,2	0	0		T										
D5	0,8	19,0	0,4	0	1,2	0	0		T										
D6	0,1	19,1	0,3	0	1,3	0	0		T										
D7	0,5	18,5	0,2	0	1,3	0	0		T										
Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>										
	0.2	19.0	0.2	0	1.5		0		0										

		ANA	LISI E	BIOGA	AS IMF	PIANTO	DI M	ATTI	E
DRE	NI	data:	29/01/	2019	Ora 1	1:10	Meteo		eno
NOR	RD	T atm	= 12	2,5	P atm	= 929	Metec	o. ser	
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>
	32,9	2,8	29,9	2	1,8	-	226		1
DREN	CH_4	0,	CO_{2}	СО	T°C	D/P	D/P	D/P	A, C,
O	0114	O_2	CO_2	CO	1 0	prima	finale	pozz	P,T
1	39,2	2,4	32,1	2	1,4	-10	-10		P
2	43,2	1,8	34,3	3	1,9	-6	-6		P
3	18,2	4,6	10,3	1	2,2	-10	-2		P
4	0,1	20,7	0,1	0	2,1	-0	-0		P
5	33,2	1,6	29,8	2	1,5	-4	-4		P
dopo	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>
	33,1	2,4	30,4	3	1,9		-227		1

D/P = Depressione (mmH2O);	$CH_4 = Conc di metano (\% in vol);$	$O_2 = Conc. ossig$	eno (% in vol);	CO_2 = conc. di anidride carbonica (% in vol.)	CO= conc. di monossido di ca
Portata = portata biogas (m³/h);	; $C = chiuso$; $P = parzializzato$	$\mathbf{A}=\mathrm{tutto}\;\mathrm{aperto}$	$\mathbf{T} = \mathrm{in\ torcia}$	FIRMA	

C2

Dopo:

18,4

CH4

31,2

3,7

 O_2

0,7

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:
Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

SST	7.1	data: 27/0	02/2019		Ora 9:47		M-+			SS'	Го	data: 27/0	02/2019		Ora: 10:5	0	M-4		
22.1	. 1	T atm =	11,0		P atm = 9	45	Meteo: se	ereno		55	I 2	T atm =	12,0		P atm = 9	48	Meteo: se	ereno	
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P		Portata	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P		Portata
1 I IIIIa.	28,8	1,0	27,8	22	11,2		-200		62	11iiia.	29,8	1,0	27,2	17	11,6		-215		53
POZZO	CH_4	O2	CO2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T	POZZO	CH4	O_2	CO_2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T
A3 bis	29,5	1,9	27,2	14	11,4	-45	-44	-25	P	В9	47,5	0,4	34,9	17	11,4	-214	-223	-209	A
A2 bis	18,3	4,7	10,5	13	10,8	-50	-20	-15	P	B13	22,0	0,6	23,0	15	11,5	-65	-41	-23	P
A1	44,0	0,9	36,6	14	10,6	-22	-25	-18	P	В6	30,7	3,9	21,0	20	11,0	-207	-210	-194	P
A3	27,0	1,4	27,6	15	11,4	-56	-56	-21	P	B1	32,1	1,8	25,8	11	11,3	-28	-29	-11	P
A4	26,5	0,8	26,8	12	11,7	-200	-224	-205	A	B10 bis	26,3	3,6	21,9	24	11,4	-30	-36	-12	P
A4 bis	21,5	3,9	14,3	11	10,9	-190	-193	-179	P	B5	29,0	2,3	26,4	15	11,6	-30	-30	-15	P
A2	36,6	1,4	32,1	20	11,3	-194	-197	-181	P	B12	29,5	1,0	29,1	14	11,8	-45	-47	-26	P
A5	29,6	0,3	29,9	15	11,0	-198	-204	-183	P	B10	43,5	0,4	32,7	18	11,7	-215	-223	-205	A
										В8	28,7	0,5	27,1	30	11,3	-120	-122	-110	P
A5 bis	27,7	0,8	27,1	15	11,4	-200	-209	-194	P	В7	28,5	0,4	26,3	16	11,8	-156	-156	-138	P
A6	32,4	0,7	29,7	11	11,7	-21	-21	-12	A	B11	31,0	0,4	28,7	13	11,9	-80	-82	-61	P
A7	54,6	0,1	33,9	25	10,8	-200	-220	-207	A	Dopo:	<u>CH4</u>	<u>O2</u>	34,1	<u>CO</u>	<u>T°C</u>		D/P		Portata
A9	47,3	1,8	33,5	19	11,2	-200	-220	-505	A		30,2	0,9	26,0	19	12,1		-224		51
A10	25,5	1,0	23,9	18	10,9	-22	-23	-11	P										
A8	59,2	0,5	36,6	19	11,5	-193	-197	-182	A										
C1	35,1	1,3	29,1	15	11,3	-200	-200	-195	A										

 $D/P = Depressione (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-22 <u>D/P</u>

-225

-15

P

Portata

64

Portata = portata biogas (m 3 /h); C = chiuso; P = parzializzato A = tutto aperto T = in torcia

17,4

CO2

28,8

15

 $\underline{\text{CO}}$

18

10,9

 $T^{\circ}C$

11,5

-22

FIRMA OPERATORE

asja:biz

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002

Data Emissione 22/11/2008

Revisione 4

LOT	ГО	data:	27/02/	2019	Ora 1	1:00	Makas			DREN	I OV	data:	27/02/	2019	Ora 1	10:35	Makas		
VECC	HIO	T atm	1 = 12	2,4	P atm	= 945	Meteo	o: ser	eno	DREN	1 53	T atm	1 = 1	1,7	P atm	1 = 945	Metec	o: sere	no
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathbf{T}^{\circ}\mathbf{C}}$		<u>D/P</u>		$\frac{\underline{Portat}}{\underline{a}}$	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		<u>Portata</u>
	0,1	19,2	0,3	0	11,6		0		0		43,5	0,8	33,4	16	11,5		-221		2
POZZO	CH_4	O_2	CO_2	СО	т∘с	D/P prima	D/P finale	D/P pozz o	A, C, P,T	POZZO	CH_4	O_2	CO_2	СО	т∘с	D/P prima	D/P finale	D/P pozzo	A, C, P,T
P1	0,1	18,2	0,2	0	11,2	0	0	0	T	В3	52,0	0,6	39,7	18	11,4	-45	-48	-37	P
P2	0,1	18,5	0,2	0	11,1	0	0	0	T	B2	46,6	1,2	30,2	16	11,5	-220	-220	-210	A
D1	0,5	18,7	0,2	1	11,3	0	0		T	B 4	39,0	0,4	29,9	22	11,6	-220	-220	-212	A
D2	0,5	17,7	0,2	0	11,2	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		<u>Portata</u>
D 3	0,3	19,1	0,0	0	11,2	0	0		T	<u> </u>	43,8	0,8	33,6	17	11,5		-220		2
D4	0,1	18,9	0,2	0	11,0	0	0		T										
D5	0,4	18,5	0,3	0	11,3	0	0		T										
D6	0,2	18,9	0,2	0	10,8	0	0		T										
D7	0,1	18,7	0,1	0	10,7	0	0		T										
Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		$\frac{\text{Portat}}{\underline{a}}$										
	0.1	19 2	0.3	0	11.6		0		0										

		ANA	LISI E	BIOGA	AS IMF	PIANTO	DI M	ATTI	E
DRE	NI	data:	27/02/2	2019	Ora 1	0:10	Meteo		eno
NOR	RD	T atm	= 11	1	P atm	= 945	Metec). ser	eno
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		$\frac{\text{Portat}}{\underline{a}}$
	33,4	1,1	28,3	13	11,0		-30		1
DREN	CH_4	0,	CO ₂	CO	T°C	D/P	D/P	D/P	А, С,
O	0114	O_2	CO_2	CO	1 0	prima	finale	pozz	P,T
1	31,9	0,8	28,6	12	10,4	-2	-2		P
2	39,1	0,4	29,6	11	10,7	-3	-3		P
3	23,1	3,7	21,1	10	11,0	-2	-2		P
4	21,7	3,5	19,8	12	10,7	-2	-2		P
5	31,1	1,2	28,2	18	10,9	-27	-27		P
dopo	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		$\frac{\underline{Portat}}{\underline{a}}$
	33,5	1	28,4	12	11,4		-30		1

D/P = Depressione (mmH2O);	$CH_4 = Conc \text{ at metano (% in Vol);}$	$O_2 = Conc. ossige$	eno (% in voi);	CO_2 = conc. di anidride carbonica (% in vol.)	CO= conc. ai monossido di ca
Portata = portata biogas (m³/h); $C = chiuso$; $P = parzializzato$	$\mathbf{A} = \mathrm{tutto} \; \mathrm{aperto}$	$\mathbf{T} = \mathrm{in\ torcia}$	FIRMA	

C2

Dopo:

20,1

CH4

31,4

2,6

 O_2

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:
Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

		1	2010040		0 0							1	010010		0 16 -		ı		
SST	۲1	data: 29/0			Ora 9:00		Meteo: n	uvoloso		SS'	Γ2	data: 29/0			Ora: 10:3		Meteo: n	uvoloso	
	1	T atm =	8,0		P atm = 9	48						T atm =	9,0	1	P atm = 9	48			
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	CO	<u>T°C</u>		D/P		<u>Portata</u>	Prima:	<u>CH4</u>	<u>O2</u>	CO2	CO	<u>T°C</u>		D/P		Portata
<u> </u>	30,0	1,0	29,5	10	9,2		-175		76	- 11111d.	30,5	1,3	24,3	8	8,0		-160		85
POZZO	CH_4	O2	CO2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T	POZZO	CH4	O_2	CO_2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T
A3 bis	18,4	3,6	13,2	2	8,4	-32	-32	-14	P	В9	48,6	0,8	35,4	8	10,1	-160	-160	-142	A
A2 bis	20,1	3,3	19,5	6	8,5	-35	-35	-2	P	B13	20,7	1,5	23,2	8	8,2	-55	-55	-31	P
A1	20,4	3,1	20,7	3	8,5	-50	-30	-12	P	В6	34,6	3,7	25,0	10	9,7	-160	-160	-143	P
A3	26,6	2,4	28,1	6	8,8	-65	-65	-42	P	B1	31,0	3,2	20,7	4	8,9	-27	-27	-14	P
A4	27,1	1,6	27,7	4	8,9	-165	-165	-147	P	B10 bis	27,2	3,4	23,5	11	8,8	-25	-25	-12	P
A4 bis	26,4	3,7	20,3	4	8,6	-155	-155	-134	P	B5	29,8	3,1	20,3	8	8,1	-38	-25	-12	P
A2	748,2	1,0	39,4	15	9,8	-170	-175	-158	P	B12	25,1	1,0	27,9	7	8,6	-55	-35	-18	P
A5	37,1	1,5	33,0	14	9,4	-175	-175	-156	A	B10	47,2	0,4	38,6	10	9,9	-160	-160	-143	A
										В8	27,2	2,2	27,3	14	8,7	-95	-95	-72	P
A5 bis	46,7	1,4	36,8	22	9,7	-175	-175	-157	A	В7	27,7	1,6	28,1	9	8,9	-117	-117	-104	P
A6	31,1	0,7	28,7	7	9,3	-32	-32	-13	P	B11	28,8	1,5	29,0	6	9,1	-100	-100	-86	P
A7	47,1	0,8	32,8	11	9,8	-175	-175	-160	A	Dopo:	<u>CH4</u>	<u>O2</u>	34,1	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		<u>Portata</u>
A9	53,4	0,6	36,0	8	10,4	-175	-175	-159	A		31,2	1,4	24,1	8	8,1		-167		85
A10	30,8	1,0	29,7	11	9,1	-32	-32	-13	P										
A8	58,2	0,7	37,2	10	10,9	-175	-175	-160	A										
C1	24,8	1,1	26,8	15	8,6	-175	-175	-154	P										

 $D/P = Depressione (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-50 <u>D/P</u>

-165

-26

P

Portata

76

Portata = portata biogas (m 3 /h); C = chiuso; P = parzializzato A = tutto aperto T = in torcia

19,8

CO2

29,8

7

 $\underline{\text{CO}}$

11

8,4

 $T^{\circ}C$

9,4

-50

FIRMA OPERATORE

asja:biz

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002

Data Emissione 22/11/2008

Revisione 4

LOT	-		29/03/		Ora 8		Metec	: nu	voloso	DREN	I SX		29/03/2		Ora 1		Metec	: nuv	oloso
VECC	ню	T atm	= 6,	4	P atm	= 955						T atm	1 = 10),0	P atm	1 = 955			
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathrm{T}^{\diamond}\mathrm{C}}$		<u>D/P</u>		Portat <u>a</u>	<u>Prima:</u>	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathbf{T}^{\mathbf{c}}\mathbf{C}}$		<u>D/P</u>		<u>Portata</u>
	0,1	19,5	0,2	0	8,8		0		0		40,1	1,9	30,1	9	8,9		-175		2
						D/P	D/P	D/P	А, С,							D/P	D/P	D/P	ĺ
POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozz o	P,T	POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozzo	A, C, P,T
P1	0,0	20,1	0,1	0	8,2	0	0	0	T	B3	29,8	3,5	25,6	4	8,5	-120	-30	-18	P
P2	0,2	19,2	0,1	0	8,8	0	0	0	T	B2	47,7	1,5	31,5	7	8,5	-175	-175	-168	A
D1	0,3	19,0	0,1	1	8,0	0	0		T	B4	39,6	1,6	30,3	12	9,6	-175	-175	-164	A
D2	0,3	18,4	0,5	0	8,2	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		<u>Portata</u>
D 3	0,2	19,3	0,3	0	8,3	0	0		T		40,3	1,8	34,1	10	8,9		-178		2
D4	0,2	19,1	0,1	0	8,3	0	0		T										
D5	0,1	19,3	0,0	0	8,0	0	0		T										
D6	0,1	19,2	0,2	0	8,1	0	0		Т										
D7	0,0	20,1	0,1	0	8,0	0	0		T										
Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathbf{T}^{\mathbf{c}}\mathbf{C}}$		<u>D/P</u>		$\frac{\underline{Portat}}{\underline{a}}$										
	0,1	19,5	0,2	0	8,8		0		0										

		ANA	LISI E	BIOGA	AS IMF	PIANTO	DI M	ATTI	E
DRE	NI	data:	29/03/	2019	Ora 1	0:10	Motor		voloso
NOR	RD	T atm	= 13	1,0	P atm	1 = 955	Metec). IIu	voioso
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		$\frac{\text{Portat}}{\underline{a}}$
	29,9	1	22,4	4	8,8		-33		1
DREN	CH_4	0,	CO_{2}	CO	T°C	D/P	D/P	D/P	A, C,
O	0114	O_2	CO_2	CO	1 0	prima	finale	pozz	P,T
1	47,4	0,9	36,2	6	9,8	-3	-5		P
2	22,2	2,5	26,8	3	8,4	-4	-4		P
3	0,0	7	0,1	1	8,2	-0	-0		P
4	0	6	0	1	8,1	-0	-0		P
5	22,4	0,3	18,4	2	8,6	-4	-4		P
	CH4	O2	CO2	CO	Т°С		D/P		Portat
<u>dopo</u>	0114	02	002	<u>00</u>	10		D/1		<u>a</u>
	29,9	1	22,4	4	8,8		-33		1

$D/P = Depressione (mmH_2O);$	CH_4 = Conc di metano (% in vol);	O_2 = Conc. ossigeno (% in vol);	$\mathrm{CO_2} = \mathrm{conc.}$ di anidride carbonica (% in vol.)	CO= conc. di monossido di ca
Portata = portata biogas (m³/h	; C = chiuso ; P = parzializzato	A = tutto aperto T = in torcia	FIRMA	

C2

Dopo:

29,4

CH4

32,0

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:
Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

		data: 29/0	04/9010		Ora 10:00	n						data: 29/0	04/2010		Ora: 16:3	0			
SST	1	T atm =			P atm = 9		Meteo: se	ereno		SS'	Γ2		21.0		P atm = 9		Meteo: se	ereno	
	CH4	O2	CO2	CO	T°C	91	D/P		Portata		CH4	O2	CO2	CO	T°C	,51	D/P		Portata
Prima:	31,7	1,2	30,8	6	13.2		-190		70	Prima:	30.5	3,0	24.0	1	17.2		-190		69
			30,8	ь	-/	D/P	D/P	D/P	70			1		1	- /	D/P	D/P	D/P	69
POZZO	CH_4	O2	CO2	CO	Т°С	prima	finale	pozzo	A, C, P,T	POZZO	CH4	O_2	CO_2	CO	T°C	prima	finale	pozzo	A, C, P,T
A3 bis	24,7	2,6	24,5	2	12,4	-30	-30	-12	P	В9	48,8	0,1	33,6	3	18,6	-190	-190	-176	A
A2 bis	30,8	1,4	28,2	16	13,1	-35	-35	-12	P	B13	27,7	0,6	23,9	2	17,0	-40	-40	-21	P
A1	27,5	1,7	28,6	10	12,8	-46	-46	-22	P	В6	36,2	3,7	26,7	3	18,7	-180	-180	-162	P
A3	32,0	1,8	30,1	2	13,7	-26	-26	-11	P	B1	33,4	2,8	28,2	2	17,9	-70	-70	-51	P
A4	26,1	3,7	23,4	4	12,5	-180	-180	-161	P	B10 bis	38,3	4,5	29,0	11	18,3	-23	-23	-11	P
A4 bis	26,4	2,5	24,8	3	12,6	-140	-140	-124	P	B5	27,7	4,6	22,9	1	16,8	-22	-22	-11	P
A2	45,2	2,9	33,4	5	14,6	-190	-190	-172	P	B12	39,7	0,6	30,0	3	18,1	-26	-26	-13	P
A5	36,2	0,5	31,6	2	13,6	-190	-190	-170	A	B10	40,5	0,7	31,0	4	18,5	-190	-190	-175	A
										В8	37,7	0,8	30,8	13	18,3	-38	-50	-33	P
A5 bis	31,7	1,6	28,2	1	13,2	-190	-190	-169	A	В7	33,2	0,3	28,4	1	18,1	-80	-85	-67	P
A6	29,7	1,3	26,9	2	13,0	-32	-32	-13	P	B11	33,6	1,0	28,4	1	18,0	-85	-90	-73	P
A7	45,7	0,3	30,4	3	14,7	-190	-190	-175	A	Dopo:	<u>CH4</u>	<u>O2</u>	34,1	<u>CO</u>	<u>T°C</u>		D/P		Portata
A9	56,5	1,8	35,7	1	14,8	-190	-190	-171	A		30,5	3,2	23,7	3	17,3		-180		71
A10	26,0	1,1	23,7	1	12,3	-31	-31	-12	P										
A8	62,6	0,1	37,5	1	15,1	-190	-190	-172	A										
C1	32,7	1,7	27,2	2	13,5	-35	-35	-14	P										

 $D/P = Depressione (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-14

P

Portata

78

-37

D/P

-190

-37

Portata = portata biogas (m 3 /h); C = chiuso; P = parzializzato A = tutto aperto T = in torcia

20,7

CO2

28,9

4,7

 O_2

2

 $\underline{\text{CO}}$

12,1

 $T^{\circ}C$

13,6

FIRMA OPERATORE

asja:biz

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002

Data Emissione 22/11/2008

Revisione 4

LOT'	ГО	data:	29/04/	2019	Ora 1	5:30	Meteo	o. cor	ano	DREN	I SY	data:	29/04/2	2019	Ora 1	17:00	Motor	o: sere	no
VECC	HIO	T atm	1 = 2	1,0	P atm	= 937	MELEC). SCI	eno	DIGEN	1 571	T atm	1 = 21	1,0	P atm	1 = 937	MELEC). Sere	110
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathrm{T}^{\diamond}\mathrm{C}}$		<u>D/P</u>		$\frac{\underline{Portat}}{\underline{a}}$	<u>Prima:</u>	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathrm{T}^{\diamond}\mathrm{C}}$		<u>D/P</u>		<u>Portata</u>
	0,1	20,1	0,2	0	8,8		0		0		39,5	1,5	30,2	2	18,4		-180		3
						D/P	D/P	D/P	A, C,							D/P	D/P	D/P	
POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozz o		POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozzo	A, C, P,T
P1	0,1	20,0	0,2	0	16,9	0	0	0	T	B 3	33,4	3,6	28,7	2	18,4	-130	-130	-115	P
P2	0,1	19,6	0,1	0	17,2	0	0	0	T	B2	42,3	1,0	33,6	1	18,9	-180	-180	-169	A
D 1	0,2	19,4	0,3	0	16,9	0	0		T	B4	37,2	2,2	35,4	2	18,7	-180	-180	-171	A
D2	0,1	20,1	0,3	0	169	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata
D 3	0,1	20,1	0,2	0	16,8	0	0		Т		39,5	1,5	30,2	2	18,4		-180		3
D 4	0,3	20,0	0,5	0	16,2	0	0		Т										
D5	0,2	19,9	0,1	0	16,6	0	0		T										
D6	0,1	19,6	0,2	0	16,5	0	0		T										
D7	0,1	20,0	0,2	0	16,2	0	0		T										
Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathbf{T}^{\mathbf{c}}\mathbf{C}}$		D/P		$\frac{\text{Portat}}{\underline{a}}$										
	0,1	20,1	0,2	0	8,8		0		0										

		ANA	LISI E	BIOGA	AS IMF	PIANTO	DI M	ATTI	E
DRE	NI	data:	29/04/2	2019	Ora 1	6:00	Meteo	o. cor	eno
NOR	RD	T atm	= 21	1,0	P atm	1 = 937	Metec	o. ser	eno
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		$\frac{\text{Portat}}{\underline{a}}$
	30,2	3,1	18,5	3	15,1		-45		1
DREN	CH_4	0,	CO ₂	СО	Т°С	D/P	D/P	D/P	А, С,
O	0114	O_2	CO_2	CO	1 0	prima	finale	pozz	P,T
1	20,5	4,7	21,1	6	14,3	-15	-4		P
2	20,4	0,8	23,4	3	14,5	-3	-3		P
3	0,0	20,7	0,1	1	13,2	-1	-1		P
4	0,0	19,2	0,4	1	13,1	-1	-1		P
5	60,3	0,3	40,5	2	16,8	-5	-15		P
dopo	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		$\frac{\text{Portat}}{\underline{a}}$
	30,4	2,5	20,1	4	15,1		-45		1

D/P = Depressione (mmH2O);	$CH_4 = Conc \text{ at metano (% in Vol);}$	$O_2 = Conc. ossige$	eno (% in voi);	CO_2 = conc. di anidride carbonica (% in vol.)	CO= conc. ai monossido di ca
Portata = portata biogas (m³/h); $C = chiuso$; $P = parzializzato$	$\mathbf{A} = \mathrm{tutto} \; \mathrm{aperto}$	$\mathbf{T} = \mathrm{in\ torcia}$	FIRMA	

C2

Dopo:

20,2

CH4

31,1

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:

Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

		data: 29/0	05/2019		Ora 9:20							data: 29/0	05/2019		Ora: 10:4	5			
SST	Γ1	T atm =			P atm = 9		Meteo: se	ereno		SS'	Γ2	T atm =			P atm = 9		Meteo: se	ereno	
ъ.	CH4	<u>O2</u>	CO2	CO	T°C		D/P		Portata	ъ.	CH4	02	CO2	CO	T°C		D/P		Portata
<u>Prima:</u>	30,1	1,2	28,8	3	17,9		-250		77	<u>Prima:</u>	25,0	3,6	22,9	1	16,4		290		80
POZZO	CH_4	O2	CO2	СО	T°C	D/P prima	D/P finale	D/P pozzo	A, C, P,T	POZZO	CH4	O_2	CO_2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T
A3 bis	27,2	3,7	18,5	2	17,1	-29	-29	-11	P	В9	44,7	0,3	37,9	2	19,6	-291	-291	-273	A
A2 bis	28,8	3,6	27,2	13	17,4	-33	-33	-10	P	B13	24,6	0,0	23,9	0	16,8	-56	-40	-24	P
A1	28,3	3,7	26,7	15	17,2	-40	-40	-17	P	B6	33,7	3,5	23,9	6	18,7	-260	-260	-243	P
A3	29,3	1,3	29,7	1	17,8	-45	-45	-22	P	B1	23,5	4,8	20,7	0	16,5	-28	-28	-12	P
A4	26,7	1,8	27,3	0	17,0	-190	-140	-128	P	B10 bis	25,3	4,6	21,7	6	16,2	-27	-27	-11	P
A4 bis	20,2	4,7	20,3	1	16,1	-230	-230	-211	P	B 5	20,8	4,2	20,4	0	16,1	-24	-24	-11	P
A2	33,4	4,1	28,2	4	18,2	-250	-250	-232	A	B12	26,1	0,3	27,9	2	16,8	-50	-50	-33	P
A5	30,2	0,8	30,3	0	18,0	-251	-251	-234	A	B10	44,8	0,2	33,1	3	19,7	-302	-302	-281	A
										В8	31,6	1,1	28,4	10	18,7	-80	-90	-72	P
A5 bis	25,4	1,5	26,2	0	16,8	-220	-150	-128	A	В7	31,3	0,1	28,3	4	189,0	-92	-110	-94	P
A6	23,8	2,1	25,3	1	16,5	-25	-25	-10	P	B11	35,4	0,7	29,2	0	19,2	-65	-80	-63	P
A7	37,6	0,4	28,9	2	18,8	-251	-251	-235	A	Dopo:	<u>CH4</u>	<u>O2</u>	34,1	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		<u>Portata</u>
A9	58,5	0,9	37,2	1	20,8	-251	-251	-232	A		30,2	3,2	23,4	2	17,1		-303		82
A10	21,7	2,2	22,7	3	16,2	-40	-30	-15	P										
A8	60,3	0,1	36,6	1	21,4	-252	-252	-236	A										
C1	26,2	2,8	25,6	0	17,1	-28	-28	-11	P										

 $D/P = Depressione (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-11

P

Portata

77

-33

D/P

-272

Portata = portata biogas (m 3 /h); C = chiuso; P = parzializzato A = tutto aperto T = in torcia

18,8

CO2

29,3

CO

4,5

 O_2

1,2

16,3

 $T^{\circ}C$

18,4

-33

FIRMA OPERATORE

asja:biz

<u>CH4</u>

Dopo:

<u>O2</u> <u>CO2</u>

20,0

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002

Data Emissione 22/11/2008

Revisione 4

LOT'	TO	data:	29/05/2	2019	Ora 1	1:40	Meteo). 60x	eno	DREN	I SY	data:	29/05/2	2019	Ora 1	11:30	Motor	o: sere	no
VECC	HIO	T atm	1 = 18	3,0	P atm	= 934	Meter). sei	eno	DILLIN	IBA	T atm	1 = 18	3,0	P atm	1 = 934	Metec). sere	110
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	$\underline{\mathbf{T}^{\mathbf{c}}\mathbf{C}}$		<u>D/P</u>		Portat <u>a</u>	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		<u>Portata</u>
	0,0	20,0	0,1	0	17,1		0		0	'	38,5	1,2	29,9	1	18,4		-180		3
						D/P	D/P	D/P	A C							D/P	D/P	D/P	
POZZO	CH_4	O_2	CO_2	CO	т°С	prima	finale	pozz o	A, C, P,T	POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozzo	A, C, P,T
P1	0,2	19,9	0,1	0	17,1	0	0	0	Т	B 3	31,4	2,6	25,6	1	18,4	-51	-51	-33	P
P2	0,0	19,7	0,1	0	16,5	0	0	0	Т	B2	42,3	1,0	31,2	2	19,6	-300	-300	-290	A
D1	0,3	20,0	0,1	0	16,5	0	0		Т	B 4	35,4	1,6	28,2	0	18,7	-300	-300	-289	A
D2	0,2	20,1	0,1	0	16,9	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata
D 3	0,3	19,9	0,2	0	16,1	0	0		T		38,5	1,2	29,9	1	18,4		-180		3
D 4	0,1	19,5	0,3	0	16,3	0	0		T										
D5	0,0	19,4	0,1	0	17	0	0		T										
D6	0,1	19,,9	0,2	0	17,2	0	0		Т										
D7	0,0	20,0	0,2	0	16,9	0	0		T										

Portat

<u>a</u>

0

<u>D/P</u>

0

		ANA	LISI B	BIOGA	S IMF	PIANTO	DI M	ATTI	E
DRE	NI	data:	29/05/2	2019	Ora 1	0:10	Meteo	o. cor	ono
NOF	RD	T atm	= 18	3,0	P atm	1 = 934	METER). SCI	e110
<u>Prima:</u>	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>
	31	1,9	22,3	2	17,1		-53		1
DREN	CH_4	O_2	CO_2	СО	Т°С	D/P	D/P	D/P	А, С,
O	0114	O_2	CO_2	CO	10	prima	finale	pozz	P,T
1	31,4	2,,7	26,8	0	18,1	-3	-3		P
2	34,6	1	30,2	0	18,7	-3	-3		P
3	0	19,6	0,1	0	16,3	-0	-0		P
4	0	20,5	0,1	0	16,1	-1	-1		P
5	58,2	0,3	43,2	3	19,4	-2	-8		P
dopo	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>co</u>	<u>T°C</u>		<u>D/P</u>		$\frac{\underline{Portat}}{\underline{a}}$
	32,2	1,4	23,6	3	17,1		-53		1

 $\underline{\mathrm{T}^{\circ}\mathrm{C}}$

17,1

CO

D/P = Depressione (mmH2O);	$CH_4 = Conc \text{ di metano (% in Vol);}$	$O_2 = Conc. ossigeno (% in vol);$	CO_2 = conc. di anidride carbonica (% in vol.)	CO= conc. di monossido di cai
Portata = portata biogas (m³/h); $C = chiuso$; $P = parzializzato$	A = tutto aperto $T = in torcia$	FIRMA	

23,0

CH4

32,2

C2

Dopo:

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:

Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

SST	7.1	data: 26/	06/2019		Ora 8:50		Meteo: se	momo		SS'	Го	data: 26/0	06/2019		Ora: 11:1	0	Meteo: se	non o	
166	. 1	T atm =	28,0		P atm = 9	48	Meteo: se	ereno		33	1 2	T atm =	28,0		P atm = 9	948	Meteo: se	ereno	
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata
1 I IIIIa.	32,3	1,4	28,5	8	26,4		-200		88	11iiia.	25,4	3,2	22,2	5	25,6		-200		82
POZZO	CH_4	O2	CO2	CO	T°C	D/P prima	D/P finale	D/P pozzo	A, C, P,T	POZZO	CH4	O_2	CO_2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T
A3 bis	24,5	2,5	17,6	3	25,2	-32	-32	-13	P	В9	45,5	0,3	31,1	5	27,4	-200	-200	-186	A
A2 bis	28,8	1,5	28,1	18	26,1	-28	-28	-11	P	B13	24,1	0,4	227,0	4	25,1	-34	-30	-12	P
A1	34,3	1,8	30,0	31	26,5	-44	-44	-20	P	В6	31,2	4,1	23,1	6	26,2	-180	-260	-243	P
A3	30,4	2,2	27,7	6	26,3	-85	-85	-64	P	B1	29,6	2,1	22,4	4	26,0	-25	-25	-12	P
A4	30,5	2,5	27,0	1	26,3	-160	-160	-141	P	B10 bis	28,8	3,8	22,3	13	25,2	-23	-23	-11	P
A4 bis	28,6	2,8	27,4	2	26,1	-180	-180	-159	P	B5	20,5	4,7	19,2	2	24,2	-37	-22	-10	P
A2	42,1	1,7	32,1	9	27,0	-195	-195	-174	P	B12	28,3	0,2	27,6	7	25,3	-40	-40	-19	P
A5	35,6	0,6	31,1	4	26,8	-200	-200	-184	A	B10	41,0	0,1	30,6	6	26,7	-200	-200	-181	A
										В8	34,8	0,9	28,4	19	26,4	-65	-90	-73	P
A5 bis	29,7	1,1	27,6	3	26,2	-180	-180	-163	P	В7	29,9	0,2	27,0	7	26,6	-90	-90	-75	P
A6	22,7	1,9	23,5	0	24,7	-36	-22	-10	P	B11	34,2	0,7	27,7	2	25,3	-70	-80	-62	P
A7	37,1	0,2	27,2	5	26,9	-200	-200	-183	A	Dopo:	<u>CH4</u>	<u>O2</u>	<u>34,1</u>	<u>CO</u>	<u>T°C</u>		D/P		
A9	59,2	0,9	36,4	3	28,4	-200	-200	-183	A		26,6	3,3	22,4	6	24,8		-210		72
A10	21,3	1,8	21,8	3	24,1	-26	-26	-12	P										
A8	61,2	0,1	36,0	3	28,9	-200	-200	-183	A										
C1	32,2	2,6	25,8	1	26,3	-38	-38	-15	P										

 $D/P = Depressione (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-13

P

Portata

89

-32

D/P

-200

-32

Portata = portata biogas (m³/h); \mathbf{C} = chiuso ; \mathbf{P} = parzializzato \mathbf{A} = tutto aperto \mathbf{T} = in torcia

21,4

CO2

28,4

8

 $\underline{\text{CO}}$

10

24,8

 $T^{\circ}C$

26,4

4,2

 O_2

1,1

FIRMA OPERATORE

asja.biz

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002

Data Emissione 22/11/2008

Revisione 4

LOT	ТО	data:	26/06/2	2019	Ora 1	1:40	L					data:	26/06/2	2019	Ora 1	10:45	L		
VECC	-	T atm	1 = 28	8,0	P atm	= 948	Meteo	o: sei	reno	DREN	I SX	T atm	1 = 29	9,0	Patm	n = 948	Meteo	o: sere	eno
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P		Portat <u>a</u>	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		<u>Portata</u>
	0,1	20,3	0,2	0	26,8		0		0		37,5	2,6	24,9	3	25,9		-215		3
						D/P	D/P	D/P	A, C,							D/P	D/P	D/P	
POZZO	CH_4	O_2	CO_2	CO	T°C	prima	finale	pozz o	P,T	POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozzo	A, C, P,T
P1	0,1	20,1	0,0	0	27,1	0	0	0	T	B3	28,4	4,6	16,1	0	25,1	-100	-100	-89	P
P2	0,2	20,3	0,1	0	26,5	0	0	0	Т	B2	44,,6	2,2	25,4	7	27,2	-215	-215	-202	A
D1	0,1	20,1	0,0	0	26,3	0	0		Т	B4	34,1	4,6	25,1	5	24,8	-215	-215	-199	A
D2	0,0	20,9	0,0	0	26,3	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata
D 3	0,2	20,2	0,1	0	25,6	0	0		Т		37,5	2,6	24,9	3	25,9		-215		3
D4	0,1	20,1	0,1	0	26,1	0	0		Т										
D5	0,1	20,2	0,0	0	26,8	0	0		T										
D6	0,0	20,0	0,1	0	26,8	0	0		T										
D7	0,0	20,1	0,1	0	27,1	0	0		T										
1	CH4	O2	CO2	СО	Т°С		D/P		Portat										

		ANA	LISI E	IOGA	S IMF	PIANTO	DI MA	ATTII	E
DRE	NI	data:	26/06/	2019	Ora 1	0:10	Meteo	o. cor	ono
NOF	RD	T atm	= 2	9,0	P atm	1 = 948	Metec). Sei	eno
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P		$\frac{\text{Portat}}{\underline{a}}$
	30,2	2,2	15,6	2	27,4		-53		1
DREN	CH_4	O_2	CO_{2}	CO	T°C	D/P	D/P	D/P	А, С,
О	0114	O_2	CO_2	CO	1 C	prima	finale	pozz	P,T
1	30,6	4,8	19,1	0	26,3	-3	-3		P
2	25,8	1,6	31,9	0	27,6	-2	-4		P
3	0,1	19,4	0,0	0	22,1	-0	-0		P
4	0,3	19,6	0,1	0	22,0	-0	-0		P
5	32,5	2,5	4,0	4	26,5	-5	-5		P
dopo	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P		Portat a
	30,2	2,2	15,6	2	27,4		-53		1

26,8

$D/P = Depressione (mmH_2O);$	CH_4 = Conc di metano (% in vol);	O_2 = Conc. ossigeno (% in vol);	CO_2 = conc. di anidride carbonica (% in vol.)	CO= conc. di monossido di car
Portata = portata biogas (m³/h); $C = chiuso$; $P = parzializzato$	A = tutto aperto $T = in torcia$	FIRMA	

- biogas
- eolico
- fotovoltaico
- biomasse
- cogenerazione

Relazione Tecnica

Dati ambientali e stato del sistema di captazione del biogas Relazione primo semestre 2019

Discarica di Mattie (TO) Località Campo Sordo

ELABORATO Valeria Rosso Controllato
Paolo Pagliazzo

Approvato
Vincenzo Pace

MT/BIO/RT/060a 16/07/2019

Via Ivrea, 70 (To) Italia T +39 011.9579211 F +39 011.9579241 info@asja.energy

Sommario

1.	Pre	emessa	3
2.	Inc	quadramento del Sito	4
3.	Im	pianto di estrazione biogas della discarica di Mattie: stato delle opere	5
4.	Dat	ti ambientali	6
4	.1.	Valutazioni sulla produzione del biogas	6
4	.2.	Quantità di biogas captato e tempi di funzionamento dell'impianto	8
4	.3.	Qualità del biogas	8
4	.1.	Qualità dell'aria	9
5.	Alle	egati tecnici	9

1. Premessa

La scrivente società, Asja Ambiente Italia S.p.A., avente sede legale a Torino in C.so Vinzaglio 24, è titolare della convenzione con la società Arforma S.p.A., già Acsel Impianti S.p.a., con sede in via Walter Fontan n. 97 Bussoleno (TO), per la costruzione e la gestione di un impianto destinato allo sfruttamento energetico del biogas prodotto dalla discarica di rifiuti solidi urbani di Mattie (TO).

Arforma S.p.A. ha messo a disposizione di Asja Ambiente Italia S.p.A., un'area della discarica posta a sud-est del lotto in coltivazione per ospitare l'impianto di valorizzazione energetica volto a consentire il corretto smaltimento di tutto il biogas prodotto dai rifiuti solidi urbani abbancati nel sito.

La presente relazione tecnica è stata redatta per rispondere alla richiesta contenuta nell'Autorizzazione Integrata Ambientale n. 73-9453/2014 del rilasciata dalla Provincia di Torino in data 25/03/2014, e riguardante la discarica di rifiuti non pericolosi, sita in località Camposordo nel Comune di Mattie (TO).

In particolare alla "sezione 5" Gestione Operativa al paragrafo "Prescrizioni", è richiesta la trasmissione di una relazione tecnica semestrale e di una annuale.

Il presente documento è riferito al primo semestre 2019.

2. Inquadramento del Sito

L'area occupata dall'impianto di smaltimento RSU di Mattie è situata nel Comune di Mattie in località Camposordo a quota 650 m slm, sul versante orografico destro della media Valle di Susa. L'accesso all'impianto avviene mediante la strada intercomunale Susa – Mattie che si congiunge alla SS 24 del Monginevro presso il Comune di Susa, oppure mediante la strada intercomunale Bussoleno – Mattie, anch'essa collegata con la SS 24 presso il Comune di Bussoleno.

Figura 1 - Vista della discarica di Mattie.

La discarica di Mattie è suddivisa in tre lotti denominati Lotto 1, Lotto 2 e Lotto 3. I primi due sono esauriti dal 2000, mentre il terzo lotto è stato completato alla fine del mese novembre 2015.

3. Impianto di estrazione biogas della discarica di Mattie: stato delle opere

L'impianto di valorizzazione energetica del biogas prodotto dalla discarica di rifiuti non pericolosi di Mattie è stato realizzato da Asja Ambiente Italia S.p.A. nel corso del 2007.

Per la gestione del biogas si fa riferimento al progetto dell'impianto di estrazione e di valorizzazione energetica (consegnato con nota prot. n. 570 del 30/03/2007), autorizzato con la Determina dirigenziale n. 103-483764/2007 dalla Provincia di Torino in data 23 aprile 2007.

Il sistema di captazione presente sul corpo discarica non ha subito variazioni rispetto all'ultima relazione consegnata, relativa all'anno 2018. Sono terminate le attività di dismissione dei dreni orizzontali ormai intasati e con ridotta capacità estrattiva.

Il sistema di convogliamento costituito da una rete duale, permette di inviare il biogas estratto al recupero energetico o alla combustione in torcia a seconda delle caratteristiche qualitative del gas, privilegiando, per quanto possibile, il recupero energetico.

Con la conclusione dei lavori di capping, ultimati nel primo semestre 2017, la configurazione impiantistica si può considerare definitiva.

I pozzi dei lotti vecchi (**Lotto 1, 2**), non soggetti alle prescrizioni relative alla gestione del biogas previste nell'Autorizzazione Integrata Ambientale , si possono dividere in tre macro gruppi.

Il primo gruppo è formato da pozzi con biogas a bassa percentuale di CH_4 ed alte concentrazioni di O_2 . Il biogas captato da questi pozzi è destinato alla termodistruzione.

Il secondo gruppo è costituito da pozzi con biogas a buona percentuale di CH₄ e basse concentrazioni di O₂.

Il biogas proveniente da questi pozzi è inviato al recupero energetico.

Il terzo gruppo è caratterizzato da pozzi con biogas a basse (a volte nulle) percentuali di CH₄, alto contenuto di O₂ ed assenza di pressione di gas presso la testa di pozzo. Il biogas proveniente da questo gruppo non ha le caratteristiche per essere termodistrutto né per essere valorizzato energeticamente, si è deciso quindi di sospenderne la captazione.

4. Dati ambientali

4.1. Valutazioni sulla produzione del biogas

Nel presente paragrafo è stata calcolata l'efficienza di captazione relativa al primo semestre del 2019, definita come il rapporto fra la capacità di captazione della centrale di aspirazione e la produzione teorica prevista di biogas e allo stesso tempo è stato aggiornato il gas model sulla base dei conferimenti, della tipologia di rifiuto e dell'attuale copertura.

Il modello previsionale della generazione di biogas utilizzato da Asja Ambiente Italia S.p.A., in accordo ai principi definiti dal sistema MOP, approvato dall'EPA (Environmental Protection Agency), assume che la generazione di metano sia funzione di una cinetica di decomposizione del rifiuto organico di primo ordine.

I parametri che caratterizzano la generazione di metano sono due:

- **k**, la costante cinetica di produzione di metano, funzione di umidità del rifiuto, disponibilità di nutrienti per i batteri metanigeni, pH e temperatura;
- **Lo**, il potenziale di generazione di metano della discarica, che dipende dalla quantità di cellulosa presente nel rifiuto; la cellulosa, infatti, contiene la più alta quantità di carbonio potenzialmente convertibile in metano; la produzione di metano diventa quindi dipendente dall'idrolisi della cellulosa.

Il modello Asja é stato validato internamente sulla base dei 20 anni di esperienza dell'azienda nel settore. Tale modellizzazione (e la sua validazione) vengono verificati annualmente sia internamente (tramite confronto fra i dati teorici progettuali di Asja Ambiente Italia S.p.A. e la reale produzione degli impianti realizzati) sia dall'Ente di Certificazione Det Norske Veritas (DNV Italia), in occasione delle visite ispettive di rinnovo della certificazione ISO 9001.

Il modello fornisce una valutazione quantitativa su base annua del biogas prodotto dalla discarica in funzione della quantità, della merceologia, del grado di umidità e dell'età dei rifiuti urbani in essa conferiti.

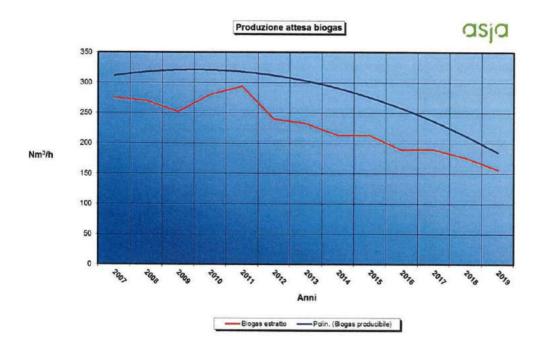


Figura 2 - Produzione di biogas

I quantitativi di biogas captati durante il primo semestre sono stati utilizzati per determinare l'efficienza di captazione, che risulta essere pari all' 83 %.

Nel precedente grafico è stata riportata in colore blu la curva di produzione teorica ed in colore rosso la curva relativa alla produzione oraria di biogas captato e inviato alla centrale di aspirazione ipotizzando un coefficiente di captazione che potrebbe stabilizzarsi intorno al valore di 83%.

Nella tabella di seguito sono riassunte le considerazioni in precedenza compiute:

Anno	Produzione teorica oraria Nm³/h	Efficienza di captazione %	Biogas estratto Nm³/h
2017	223	85	189
2018	212	83	175
2019 (*)	195	80	156

(*) Primo semestre

Tabella 1 - Produzione oraria di biogas

4.2. Quantità di biogas captato e tempi di funzionamento dell'impianto

Nelle tabelle seguenti sono illustrati i dati mensili relativi alle ore di funzionamento dei sistemi di combustione del biogas e le quantità di biogas inviato al recupero energetico o alla termodistruzione a torcia:

Mese	Ore funzionamento motore	Portata mensile biogas m ³
Gennaio 2019	743	77.217
Febbraio 2019	672	80.310
Marzo 2019	741	86.436
Aprile 2019	715	81.062
Maggio 2019	735	84.898
Giugno 2019	676	75.276

Tabella 2 - Ore di funzionamento motore e portate biogas inviate al recupero energetico

Mese	Ore funzionamento torcia	Portata mensile biogas m ³
Gennaio 2019	2	160
Febbraio 2019	2	160
Marzo 2019	2	160
Aprile 2019	3	240
Maggio 2019	6	480
Giugno 2019	36	2880

Tabella 3 - Ore di funzionamento torcia e portate biogas inviate alla termodistruzione

4.3. Qualità del biogas

Asja Ambiente Italia S.p.A. ha provveduto ad eseguire il campionamento e l'analisi del biogas nel mese di Marzo 2019, così come previsto dall'allegato sezione 5 Gestione Operativa del paragrafo "Prescrizioni" dell'Autorizzazione Integrata Ambientale.

Si veda nel dettaglio il Rapporto di Prova n. AGB190312B del 26.03.2019 allegato alla presente.

4.1. Qualità dell'aria

Asja Ambiente Italia S.p.A. ha provveduto ad eseguire il campionamento e l'analisi delle emissioni provenienti dal gruppo elettrogeno nel mese di Marzo 2019, così come previsto dall'allegato sezione 5 Gestione Operativa del paragrafo "Prescrizioni" dell'Autorizzazione Integrata Ambientale.

Si veda nel dettaglio il Rapporto di Prova del 26.03.2019 allegato alla presente.

5. Allegati tecnici

- Allegato 1 Rapporto di Prova n. AGB190312B del 26.03.2019, "Caratterizzazione del biogas captato ed avviato alla valorizzazione energetica" - discarica di Mattie (TO)
- Allegato 2 Rapporto di Prova del 26.03.2019, "Certificato di analisi Emissioni" discarica di Mattie (TO)

INFORMAZIONI GENERAL	ERALI									
	Impresa				Campagna di	Campagna di rilevi alle emissioni				
Ragione sociale: ASJA AMBIENTE ITALIA S.p.A LOCALITA' CAMPOSORDO MATTIE TO		codice impresa: 001156	a: 001156		data dell'autocontrollo	ntrollo	12/03/2019			
Nominativo del Gestore (o del Referente): Geom. FRUTTERO Giorgio	iferente): Geom. FRL	JTTERO Giorg	gio		n. di giornate effettuate per il campionamento del camino	ettuate per il del camino	Unico Giorno		ORTHON TO	
	Estremi autorizzativi	livi			ora di inizio e fir giorno/i	ora di inizio e fine delle operazioni nel/i giorno/i	10:55-12:54 12/03/2019		HION	
Aut. N. 73-9453/2014 del 25/03/2014; Attività di recupero del - n. 62/2016 del 06/03/2017	- lob				tipo di autocontrollo (iniziale/periodico/unico)	ollo :a/unico)	PERIODICO		SECULO SE	.)
Denominazione del camino oggetto di verifica:E1	tto di verifica:E1				scadenza pross	scadenza prossimo autocontrollo	marzo 2020		2000	3
Denominazione fasi / macchinari con aspirazione attive collegati al punto di emissione:	con aspirazione attive	e collegati al p	unto di emis	ssione: -		Eventuali note	li note		TA CAD	
Proventenza effluenti: MOTORE BIOGAS	BIOGAS				Metodi utilizzati per i param 2006; UNI EN 14789:2006.	per i parametri fisici: UN 4789:2006.	Metodi utilizzati per i parametri fisici: UNI EN ISO 16911-1:2013; UNI 14790 2006; UNI EN 14789:2006.		Data 26/03/2019 Firma	
							Laboratori coinvolti	oinvolti		
							Denominazione/indirizzo/telefono/fax/e-mail: NEOSIS S.r.I. / Via Juglaris 16/4 – 10024 MONCALIERI (TO) 011-0673811 (011-0673820/info@noosis it	ono/fax/e-n 16/4 - 1002	nail: 24 MONCALIERI (TO)	
	Ente di controllo	2			campionamenti:	Laboratori cne nanno effettuato i campionamenti:	Denominazione/indirizzo/telefono/fax/e-mail:	ono/fax/e-n	nail:	T
Presenza dell'Ente di controllo durante i campionamenti	lo durante i campiona	ımenti	Si.	No X						
Riportare eventuali rilievi dell'Ente di controllo:	e di controllo:				Laboratori d'analisi	isi	Denominazione/Indirizzo/telefono/fax/e-mail	ono/fax/e-n	nail:	
					(se diversi da quelli che hanno effettuato i campionamenti):	uelli che hanno pionamenti):	Denominazione/Indirizzo/telefono/fax/e-mail:	ono/fax/e-n	nail:	
		CAMPIC	ONAMENT	CAMPIONAMENTO, ANALISI		ONE DEI RISULTAT	ED ESPRESSIONE DEI RISULTATI (rif. Manuale 158 UNICHIM	IM)		District of the
	Criteri di ce	Criteri di campionamento	nto				Caratteristiche del camin	io e parar	Caratteristiche del camino e parametri fisici dell'emissione	
			T			Δ.	Punto di emissione		Parametri fisici dell'emissione	9
livello di emissione	Costante	X Variabile	e			altezza dal piano campagna [m]	ipagna [m]	8	temperatura media al prelievo [°C]	510
andamento emissione	Continuo	X Discontinuo	ont			altezza del punto di prelievo [m]	relievo [m]	9	umidità al punto di prelievo [%V]	9,5
conduzione d'impianto	Costante	X Variabile	9			direzione allo sbocco (vert / orizz)	(vert / orizz)	Verticale	conc. ossigeno libero [%V]	5,47
marcia impianto	Continuo	X Discontinuo	ont			diametro camino al punto di prelievo [m]	unto di prelievo [m]	0,25	velocità lineare [m/s]	3,22
classe di emissione	-	272		=	2	sezione della bocca del camino [m²]	lel camino [m²]	0,0491	portata autorizzata [Nm³/h]	•
numero di campionamenti	≥3	≥3per fase	se	25	≥3per fase	pressione barometrica [kPa]	a [kPa]	94,3	portata misurata [m³/h]	569
durata del campionamento	≥30′	× ×30'		≥30′	durata fase	numero bocchelli pres	numero bocchelli presenti nel piano di misura	-	portata normalizzata [Nm³/h]	185
tipo di campionamento	casuale	casuale		casuale	durata fase	Tipo impianto d'abbattimento	attimento Catalizzatore ossidante	ante	portata aeriforme secco [Nm³/h]	167
periodo di osservazione	qualsiasi	durata fase		qualsiasi	durata fase	Compilare informazi	Compilare informazioni di PAG. 2 sulla verifica di adeguatezza del punto di prelievo	adeguatez	za del punto di prelievo	
									Punto di Emissione: E1	E ::

Pagina 1 di 4

Acido cloridrico (HCI)* mg/Nm3 ata (min) 10:56-12:31 t,00 gello polveri eri (mm) Acqua ultrapura eri matricola pp Acqua ultrapura eni matricola pp Acqua ultrapura	Ossidi di azoto (come NO2)* mg/Nm3 10:55-12:54	13 13	Acido fluoridrico (HF)* mg/Nm3	Carbonio organico totale in forma		F	Taroptino
metodo		mg/nm3	mg/Nm3			Comment of the last of the las	aldiu e
metodo		10:55-12:34		gassosa (TVOC)* mg/Nm3	nb)	alora siano state adottate	(qualora siano state adottale tecniche di analisi diretta a camino)
metodo			10:56-12:31	10:55-12:24		tipo di miscela di gas	concentrazione dei singoli componenti presenti
metodo		5,57	1,00		Inquinante 1	Vedi allegati	Vedi allegati
metodo		10	•	6	Inquinante 2	Vedi allegati	Vedi allegati
metodo		47			Inquinante 3	Vedi allegati	Vodiallanati
etodo		Membrana in fibra di vetro	Acqua ultrapura	,	Inquinante 4	Vedi allegati	Vedi allegati
	12/03/2019	MEGASYSTEM ISOCHECK SAB 0373; MEGASYSTEM LIFETEK 55 XP-R POMPA MEMB. 55157	FM&C F16291-4	PCF ELETTRONICA FID 2001/C 7112/17	Inquinante 5	Vedi allegati	Vedi allegati
		12/03/2019	12/03/2019	12/03/2019	allegare l'ands	mento grafico dei valori ril automatico	allegare l'andamento grafico dei valori rilevati durante l'acquisizione mediante sistema automatico di analisi diretto
metodica analitica	UNI EN 14792:2017	UNI EN 13284-1:2017	DM 25/08/2000 GU	UNI EN 12619-2013	GRAFICI	DI EVENTUALI PARA	GRAFICI DI EVENTUALI PARAMETRI CON MISURE IN CONTINUO
	-		158 AW 2 0.0968		Vedi allegati. Se i del metodo non è	Vedi allegati, Se i valori per tutto il periodo di del metodo non è previsto l'allegato grafico	Vedi allegati. Se i valori per tutto il periodo di monitoraggio sono inferiori al limite di rivelabilità del metodo non è previsto l'allegato grafico.
conc. prima prova (E1) *	211,6	3,44	<0,1	7			
conc. seconda prova (E2) * 3 0,84	217,4	0,75	8'0	F	Anna de la companione d	The first months and the second secon	
conc. terza prova (E3) * 0,71	210,6	<0,26	6,0	⊽		And the second s	
conc. quarta prova (E4) *							
conc. quinta prova (E5) *							
livello di emissione medio (Ē) *	213,20	1,483	0,400	P	Conclusion! /	eventuali considerazi	Conclusioni / eventuali considerazioni dei responsabile dell'autocontrollo
flusso di massa (Ē x Q) ™ 0,00016	0,03466	0,00024	0,00007	<0,00017	* = I parametri con	trassegnati dall'asterisco	= parametri contrassegnati dall'asterisco sono parametri non accreditati ACCREDIA.
deviazione standard (σ) u u 0,361	3,67	1,712	0,361		# = I risuitati dei pe per E1	arametri riportati sono riler	# = i isultati dei parametri riportati sono riteriti ad un tenore volumetrico di ossigeno del 5% per E1
Coeff. di variazione (σ /Ē)	0,0172	1,1543	0,9014				
ie (Ē+σ)	216,87	3,195	0,761	t>	I risultati ottenuti risulta che in flusso di massa	sultano essere inferiori ai	I risultati ottenuti risultano essere inferiori ai rispettivi limiti autorizzativi, sia in concentrazione che in flusso di massa.
flusso di massa [Q(Ē+σ)] ** 0,00022	0,03539	0,00052	0,00013	<0,00017			
concentrazione autorizzata	450	10	2	150			
superficie vasche	,			-			
flusso di massa autorizzato			-	-			
(1) e riecessano fornire tale indicazione qualora le metodiche analitiche consentano di poter scegliere fra più "valore in concentrazione così come previsto dal provv, autorizzativo "* prodotto de effettuarsi fra grandezze	iche consentano di pot o ** prodotto da effettu		principi di misura.				

ARPA PIEMONTE

Documento di ordine superiore: U.RP,T171

Punto di Emissione: E1

2	
=	
100	
=	
H	
ij.	
rdir	
rdir	
ordir	
ordin	
iordi	
li ordir	
di ordir	
di ordir	
di ordir	
o di ordir	
to di ordir	
ito di ordir	
nto di ordir	
ento di ordir	
ento di ordir	
rento di ordir	
nento di ordir	
mento di ordir	
mento di ordir	
umento di ordir	
umento di ordir	
cumento di ordir	
cumento di ordir	
ocumento di ordir	
ocumento di ordir	
Documento di ordir	
Documento di ordii	

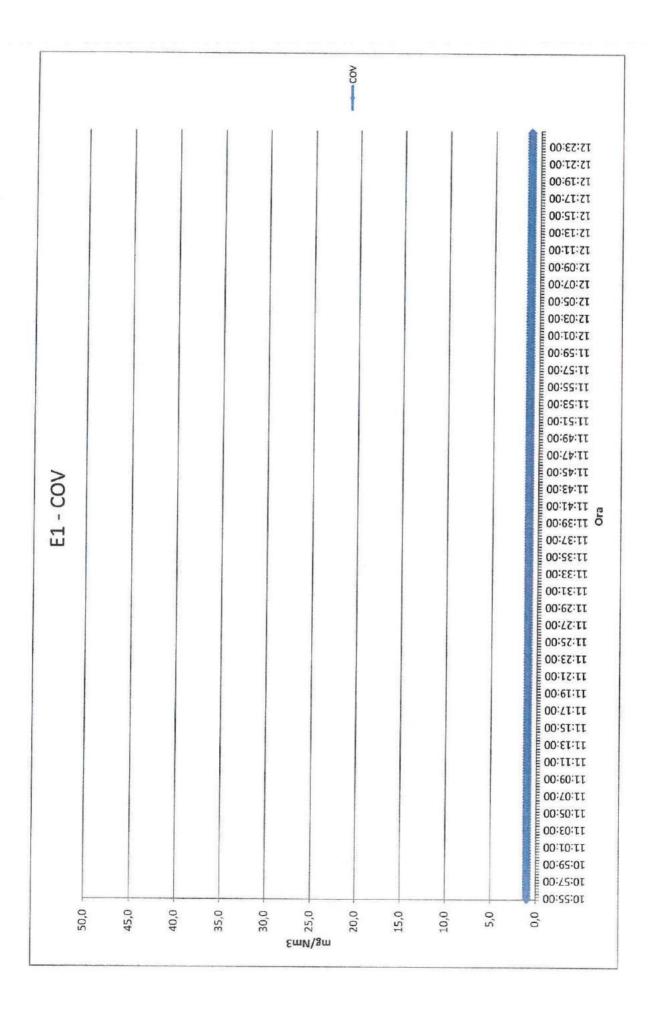
7.01
RE
\$549
J.RP

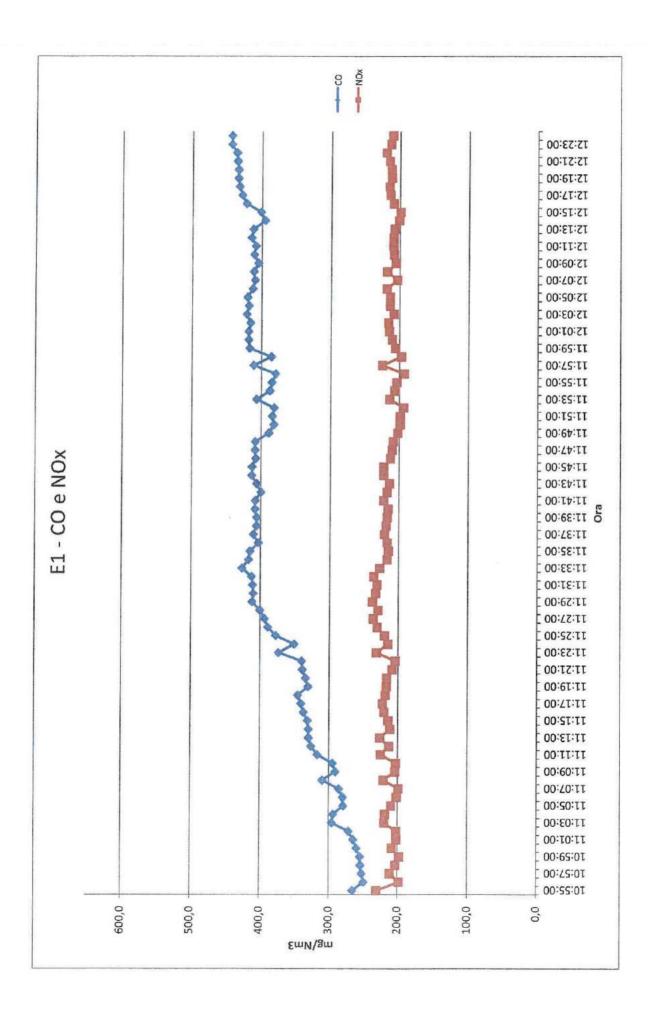
	7.44	Monossido di carbonio (CO)* mg/Nm3	(qualor	Tarature	Tarature (qualora siano state adottate tecniche di analisi diretta a camino)
orario camp. o durata (min)		10:55-12:54		tipo di miscela di gas con	concentrazione dei singoli componenti presenti
flusso di campionamento (l/min)			Inquinante 1	+	Vedi allegati
(mm)			Inquinante 2	Vedi allegati	Vedi allegati
(mm)	n		Inquinante 3	Vedi allegati	Vedi allegati
	net		Inquinante 4	Vedi allegati	Vedi allegati
eventuale marca e matricola degli analizzatori impiegati (1)	odo		Inquinante 5	Vedi allegati	Vedi allegati
data effettuazione ultima taratura		12/03/2019	allegare l'andame	ento grafico dei valori rilevati durante l'ac automatico di analisi diretto	allegare l'andamento grafico dei valori rilevati durante l'acquisizione mediante sistema automatico di analisi diretto
metodica analitica		UNI EN 15058:2017	GRAFICI DI	I EVENTUALI PARAMET	GRAFICI DI EVENTUALI PARAMETRI CON MISURE IN CONTINUO
limite di rivelabilità		2	Vedi allegati. Se i vak	Vedi allegati. Se i valori per tutto il periodo di mon del metodo non è previsto l'allocato grafico	Vedi allegati. Se i valori per tutto il periodo di monitoraggio sono inferiori al limite di rivelabilità
conc. prima prova (E1) *	C	303,5			en e
conc. seconda prova (E2) *	ımp	402,1	AND THE PROPERTY OF THE PROPER		
conc. terza prova (E3) *	ion	417,0			emention in the second or the
conc. quarta prova (E4) *	ame			And the state of t	
conc. quinta prova (E5) *	nti				
livello di emissione medio (Ē) *	72.5	374,20	Conclusioni / ev	ventuali considerazioni	Conclusioni / eventuali considerazioni dei responsabile dell'autocontrollo
flusso di massa (Ē x Q) **	L	0,06083	# = I risultati dei paran	ımetri riportati sono riferiti ad	# = I risultati dei parametri riportati sono riferiti ad un tenore volumetrico di ossigeno del 5%
deviazione standard (o)	ana	61,68	Der El		
Coeff. di variazione (σ/\bar{E})	lisi	0,1648	1 risultati ottenuti risult	Itano essere inferiori al rispel	I risultati ottenuti risultano essere inferiori ai rispettivi limiti autorizzativi, sia in concentrazione
(Ē+σ)	dei	435,88	che in flusso di massa.	iā.	
flusso di massa [Q(Ē+ơ)] **	dat	0,07083			
concentrazione autorizzata	i	200			
superficie vasche					
ilusso di massa autorizzato		Total and addition to the state of the state	The state of the s		

ARPA PIEMONTE

Punto di Emissione: E1

(1)	
Z	
욪	
E	
4	
5	
Z	


The state of the s	ח מומומומ מ	THE CANADA STATE OF THE CA	S OCCUPIED	dSSOSO SE	condo la l	EN EN	50 16911-1	. CNI EN .	5259, 13284	-1
Composizione Gas:	.20	5,47	۸/۸ %	CO2: AMB.	AMB.	۸/۸%	%v/v Umidità	9.5		N/N %
Pressione Atmosferica:	P.atm:	940	mbar	Cond.Meteocl.	teocl.	Sereno				
			S					orizzontalo		
Fattore di taratura Pitot:	0,83	Tipo Pitot:		Sezione	Sezione prelievo:0 0491	101	Verticale	ala ala	>	
Posizionamento sezione di prelievo (Rif. UNI EN ISO 16911-1/ UNI (curve, ecc), 5 diametri dallo sbocco a camino:	VISO 16911-1/	UNI EN 15259) 5 diametri idraulici a monte/2 diametri idraulici a valle da ostacoli	diametri ic	draulici a m	onte/2 dian	netri idra	ulici a valle	da ostacoli	(S)	
Presenza di dispositivi di raddrizzamento del flusso:	nsso:								S	


Se NON è rispettato il requisito dei diametri o la presa è posta su un tratto orizzontale del condotto, ad esclusione dei camini a tiraggio naturale, effettuare le seguenti valutazioni integrative in occasione di ogni autocontrollo:

	8	Sim marcoconii cino							
Bocchello di misura 1:		Ora iniz	Ora inizio misure:						
Affondamento (i) nr. *:	1 2 3	4	5	6	α	Δ	Madia /v.	Dispotto	Conclination
cm							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	condizione	Condizione
Angolo flusso gassoso rispetto asse del condotto									75
Flusso negativo locale									?
□P [KPa]									ON
T (0) T									< 25 Pa tra □Pi e <□Pi>
¥.									< 5 % tra T. a . T.
v [m/sec]					1				7
		Yes the second to							3 <vi<50< td=""></vi<50<>
									v max; /v min; < 3:1
Bocchello di misura 2		Ora inizio	do misure:						
Attondamento (i) nr.:	2 3	4	5	9	80	6	Media <x></x>	Rispetto	Condizione
сш								condizione	
Angolo flusso gassoso rispetto asse del condotto									<15
Flusso negativo locale									3
P [Pa]									02
									< 25 Pa tra □Pi e <□Pi>
W.]_		-							<5% tra Ti e <t></t>
v [m/sec]									3 <vi<50< td=""></vi<50<>
									v maxi/v mini< 3:1

SP WEET

Nominativo del Gestore (o del Referente per l'autocontrollo): Geom. Giorgio Fruttero EMISSIONE: Firma del Gestore dell'impianto Timbro dell'Impresa	INFORMAZIONI DA FORNIRSI A CURA DEL GESTORE DELL'IMPIANTO (2) DATI DELL'IMPRESA	DEL GESTORE DELL'IMPIANTO (2) IPRESA	
Firma del Gestore dell'impianto	Ragione sociale Asja Ambiente Italia S.p.a.	Data	
Firma del Gestore dell'impianto	Nominativo del Gestore (o del Referente per l'autocontrollo): Geom. Giorgio Fruttero	Rivoli 27/03/2019	
	EMISSIONE:		te Italia S.p.A.
	Principali parametri di marcia degli impianti (ad esempio: n. pezzi prodotti, velocità di macchina, superfic	cie verniciata, potenza termica erogata, consumo rivestimenti, ecc.	
Principali parametri di marcia degli impianti (ad esempio: n. pezzi prodotti, velocità di macchina, superficie verniciata, potenza termica erogata, consumo rivestimenti ecc.	Portata Biogas 125 m3/h Pressione di alimentazione 95 mbar		The second secon
yli impianti (ad esempi Pressione di alim	Carico di processo (% di produzione in cui l'impianto marcia rispetto alla sua potenzialità) 16%		
Principali parametri di marcia degli impianti (ad esempio: n. pezzi prodotti, velocità di macchina, superficie verniciata, potenza termica erogata, consumo rivestimenti, ecc) Portata Biogas 125 m3/h Pressione di alimentazione 95 mbar Carico di processo (% di produzione in cui l'impianto marcia rispetto alla sua potenzialità) 16%	Altri camini autorizzati con medesimo atto e NON sottoposti a controllo (indicare denominazione e motiv	vi del mancato campionamento)	
Principali parametri di marcia degli impianti (ad esempio: n. pezzi prodotti, velocità di macchina, superficie verniciata, potenza termica erogata, consumo rivestimenti, ecc) Portata Biogas 125 m3/h Pressione di alimentazione 95 mbar Carico di processo (% di produzione in cui l'impianto marcia rispetto alla sua potenzialità) 16% Altri camini autorizzati con medesimo atto e NON sottoposti a controllo (indicare denominazione e motivi del mancato campionamento)	Eventuali note		
Principali parametri di marcia degli Impianti (ad esempio: n. pezzi prodotti, volocità di marchina, superficie verniciata, potenza termica eroguta, consumo rivestimenti, ecc) Portata Biogas 125 m3/h Pressione di alimentazione 95 mbar Carico di processo (% di produzione in cui l'impianto marcia rispetto alla sua potenzialità) 16% Altri camini autorizzati con medesimo atto e NON sottoposti a controllo (indicare denominazione e motivi del mancato campionamento) Eventuali note			

Air Liquide Italia Service S.r.I. Laboratorio Specialty Gases 20090 Rodano (MI) - S.P. 14 Rivoltana km 6 Tel. 02 95757 244/225 - Fax 02 95320616

industria.airliquide.it

CERTIFICATO

Cliente

Neosis

Data

06/11/2018

Richiedente

UO Nord Ovest T 4508642697,10

Protocollo

z/4082

Recipiente

10 LT

Natura del contenuto

Miscela

BarCode

AEG57LF

Nr.Scheda Mix 5516

COMPONENTE		Concentrazione							
		Nominale		Tolleranza		Valore Misurato	Incertezza Espansa (**)		
Propano	СЗН8	10	ppm	+	5 %	9,88 ppm	ŧ	2%	
Ossigeno	02	21	%	ż	5 %	21,034 %	ż	2 %	
Metano	CH4	40	ppm	+	5%	40,10 ppm	±	2%	
	39	And the second s							

Complemento	Complemento Azoto		Concentrazione	MOL
Temperatura mir	n. di utilizzo	5 °C	Pressione di riemplmento	151 bar
Scadenza misce Volume di gas a	ela (Mesi) 15°C 1013,25 mbar	24 1493 Litri	Pressione min. di utilizzo	5 bar

Normativa di riferimento per la preparazione: ISO 6142

Normativa di riferiento per analisi: ISO 6143

La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro di Taratura LAT N°055.

(**) intervallo di confidenza 95%

AIR LIQUIDE ITALIA Service S.r.I.

ACCETTATO IL 20/11/2018 GB

L'Analista

Air Liquide Italia Service S.r.l. Laboratorio Specialty Gases 20090 Rodano (MI) - S.P. 14 Rivoltana km 6 Tel. 02 95757 244/225 - Fax 02 95320616 industria.airliquide.it

CERTIFICATO

Cliente

Neosis

Data

08/11/2018

Richiedente

UO Nord Ovest T 4508642697,30

Protocolio

z/4122

Recipiente

10 LT

Natura del contenuto

Miscela

BarCode

AD9LGAG

Nr.Scheda Mix

COMPONENTE		Concentrazione							
		Nominale		Tolleranza		Valore Misurato	Incertezza Espansa (**)		
Ossido Carbonio	СО	170	ppm	‡	5 %	168,5 ppm	ż	2 %	
Ossido Azoto	NO	200	ppm	±	10 %	188,8 ppm	±	2 %	
NOx totali			ppm	±		189,3 ppm	÷	3 %	
					1				
		*							
					1		1		

Complemento Azoto			Concentrazione	MOL.	
Temperatura min	. di utilizzo	5°C	Pressione di riempimento	151 bar	
Scadenza misce Volume di gas a	la (Mesi) 15°C 1013,25 mbar	18 1611 Litri	Pressione min. di utilizzo	5 bar	

Normativa di riferimento per la preparazione: ISO 6142

Normativa di riferiento per analisi: ISO 6143

La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro di Taratura LAT N°055.

(**) intervallo di confidenza 95%

AIR LIQUIDE ITALIA Service S.r.l.

ACCETTATO IL 20/11/2018

L'Analista LUIGING PLEBANI

GB

Air Liquide Italia Service S.r.l. Laboratorio Specialty Gases 20090 Rodano (MI) - S.P. 14 Rivoltana km 6 Tel. 02 95757 244/225 - Fax 02 95320616

industria.airliquide.it

CERTIFICATO

Cliente

Neosis

Data

20/09/2018

Richiedente

UO Nord Ovest T 4508642697,20

Protocollo

z/3512

Recipiente

10 LT

Natura del contenuto

Miscela

BarCode

ADXNCRC

Nr.Scheda Mix 2757

COMPONENTE		Concentrazione							
		Nominale		Tolleranza		Valore Misurato	Incertezza Espansa (**)		
Anidride Carbonica	CO2	10	%	+	5 %	9,99 %	± ±	2 %	
Ossigeno	O2	15	%	ŧ	5%	15,137 %	ţ	2 %	
e:									

Complemento	o Azoto		Concentrazione	
Temperatura min	. di utilizzo	5 °C	Pressione di riempimento	151 bar
Scadenza misce	la (Mesi)	36		
Volume di gas a	15°C 1013,25 mbar	1510 Litri	Pressione min. di utilizzo	5 ba

Normativa di riferimento per la preparazione: ISO 6142 Normativa di riferiento per analisi: ISO 6143

La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro di Taratura LAT Nº055.

(**) intervallo di confidenza 95%

AIR LIQUIDE ITALIA Service S.r.I.

ACCETTATO IL 01/10/2018 GB

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 2 pagine

Cliente:

ASJA AMBIENTE ITALIA S.p.A.

Indirizzo:

LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione:

BIOGAS

Punto Campionato:

BIOGAS (AIA Nº 73-9453/2014 - Attività di recupero n.62/2016 del 06/03/2017)

Id campione interno:

AGB190312B-005

Data campionamento inizio:

12/03/19 11:40

Data campionamento fine:

12/03/19 12:09

Procedura di campionamento:

Campionamento effettuato da Neosis s.r.l. nella persona dei Sig. Gianluca Brando

con verbale di campionamento n° AGB190312B

Data di ricevimento campione:

12/03/19

Data emissione rapporto di prova:

26/03/19

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede
Temperatura atmosferica	°C	9	•	MI303_15	12-mar-19	L1
Pressione atmosferica	KPa	98.1		MI303_15	12-mar-19	L1
Acido solfidrico (H2S)	ppmv	<5	15000	MI303_15	12-mar-19	L1
Monossido di Carbonio (CO)	ppmv	<5		MI303_15	12-mar-19	L1
Idrogeno (H2)	ppmv	<5		MI303_15	12-mar-19	L1
Ossigeno (O2)	% vol/vol	2,1		MI303_15	12-mar-19	L1
Azoto (N2)	% vol/vol	34,1		MI303_I5	12-mar-19	L1
Anidride carbonica (CO2)	% vol/vol	27,5	-	MI303_15	12-mar-19	L1
Metano (CH4)	% vol/val	37,1	min 39	MI303_15	12-mar-19	L1
Umidità (H2O)	%	<1	•	UNI EN 14790:2017	12-mar-19	Li
Potere Calorifico Inferiore (PCi)	KJ/Nm3	13286	min 12500	Calcolo	12-mar-19	L1

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Dichiarazione di conformità:

Limitatamente ai parametri determinati il campione in esame è conforme ai limiti di specifica previsti dal D.M. 5 febbraio 1998, ALLEGATO 2 sub 1, punto 2.2.

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

U Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. I pagina

Cliente:

ASJA AMBIENTE ITALIA S.p.A.

Indirizzo:

LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione:

BIOGAS

Punto Campionato:

BIOGAS (AIA Nº 73-9453/2014 - Attività di recupero n.62/2016 del 06/03/2017)

Id campione interno:

AGB190312B-003

Data campionamento inizio:

12/03/19 11:00

Data campionamento fine:

12/03/19 11:29

Procedura di campionamento:

Campionamento effettuato da Neosis s.r.l. nella persona dei Sig. Gianluca Brando

con verbale di campionamento nº AGB190312B

Data di ricevimento campione:

12/03/19

Data emissione rapporto di prova:

26/03/19

Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede			
Acido cloridrico (HCl)	mg/Nm3	<0,04		DM 25/08/2000 GU n°223 23/09/2000 SO 158 All 2	15-mar-19	L1			
Acido Nuoridrico (HF)	mg/Nm3	<0,09		DM 25/08/2000 GU n°223 23/09/2000 SO 158 All 2	15-mar-19	L1			
Acido solforico (H2SO4)	mg/Nm3	6,69		NIOSH 7908:14	15-mar-19	L1			

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

anni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. I pagina

Cliente:

ASJA AMBIENTE ITALIA S.p.A.

Indirizzo:

LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione:

BIOGAS

Punto Campionato:

BIOGAS (AIA N° 73-9453/2014 - Attività di recupero n.62/2016 del 06/03/2017)

Id campione interno:

AGB190312B-004

Data campionamento inizio:

12/03/19 09:35

Data campionamento fine:

12/03/19 10:35

Procedura di campionamento:

Campionamento effettuato da Neosis s.r.l. nella persona dei Sig. Gianluca Brando

con verbale di campionamento nº AGB190312B

Data di ricevimento campione:

12/03/19

Data emissione rapporto di prova:

26/03/19

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede		
Polveri totali	ug/m3	<41,7	•	UNI EN 13284-1:2017	18-mar-19	L1		

Legenda:

LI = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

U Direttore Tecnico

Hort Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente:

ASJA AMBIENTE ITALIA S.p.A.

Indirizzo:

LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione:

BIOGAS

Punto Campionato:

BIOGAS (AIA N° 73-9453/2014 - Attività di recupero n.62/2016 del 06/03/2017)

Id campione interno:

AGB190312B-002

Data campionamento inizio:

12/03/19 11:00

Data campionamento fine:

12/03/19 11:29

Procedura di campionamento:

Campionamento effettuato da Neosis s.r.l. nella persona dei Sig. Gianluca Brando

con verbale di campionamento nº AGB190312B

Data di ricevimento campione:

12/03/19

Data emissione rapporto di prova:

26/03/19

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede
Ammoniaca (come NH3)	mg/Nm3	32,4	•	EPA CTM 027 1997	15-mar-19	L1

Legenda

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Direttore Tecnico

Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 2 pagine

Cliente:

ASJA AMBIENTE ITALIA S.p.A.

Indirizzo:

LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione:

BIOGAS

Punto Campionato:

BIOGAS (AIA Nº 73-9453/2014 - Attività di recupero n.62/2016 del 06/03/2017)

Id campione interno:

AGB190312B-001

Data campionamento inizio:

12/03/19 11:00

Data campionamento fine:

12/03/19 11:29

Procedura di campionamento:

Campionamento effettuato da Neosis s.r.l. nella persona dei Sig. Gianluca Brando

con verbale di campionamento n° AGB190312B

Data di ricevimento campione:

12/03/19

Data emissione rapporto di prova:

26/03/19

Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede
Sostanze organiche volatili	mg/m3	52,9		UNI CEN/TS 13649:2015	23-mar-19	L1
Metilmercaptano	ppm	<0,4	•	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1
Etilmercaptano	ppm	<0,4	•	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1
Dimetil solfuro	ppm	<0,4	•	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1
Butilmercaptano	ppm	<0,4	•	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-пыт-19	L1
Dimetil disolfuro	ppm	<0.4	*	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1
2-metiltiofene	ppm	<0,4	17	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1
Metil etil disolfuro	ppm	<0,4	•	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1
Metil sec-butil disolfuro	ppm	<0,4		EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1
Etil n-butil disolfuro	ppm	<u.a< td=""><td>•</td><td>EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017</td><td>23-mar-19</td><td>L1</td></u.a<>	•	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1
Dibutil disolfuro	ppm	<0,4	•	EPA 3550C 2007 + EPA 5030C 2003 + EPA 8260D 2017	23-mar-19	L1

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Il Direttore Tecnico

CDott Granni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ARIA AMBIENTE

Punto Campionato: PUNTO 1: MONTE DISCARICA

Id campione interno: AGR190523A-001

Data campionamento inizio: 21/05/19 10:15

Data campionamento fine: 23/05/19 10:14

Procedura di campionamento: Campionamento effettuato da Neosis s.r.l. nella persona del Sig. Giovanni Barbuti

con verbale di campionamento n° AGR190523A

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 10/06/19

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede	
Ammoniaca (come NH3)	mg/m3	<0,001	-	NIOSH 6016:96	27-mag-19	L1	

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Il Direttore Tecnico

Dott. Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ARIA AMBIENTE

Punto Campionato: PUNTO 1: MONTE DISCARICA

Id campione interno: AGR190523A-002

Data campionamento inizio: 21/05/19 10:15

Data campionamento fine: 23/05/19 10:14

Procedura di campionamento: Campionamento effettuato da Neosis s.r.l. nella persona del Sig. Giovanni Barbuti

con verbale di campionamento n° AGR190523A

Data di ricevimento campione: 23/05/19
Data emissione rapporto di prova: 10/06/19

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede	
Acido solfidrico (H2S)	ppm	<0,003	-	EPA 376.2 1978	31-mag-19	L1	

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Il Direttore Tecnico

Dott. Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ARIA AMBIENTE

Punto Campionato: PUNTO 2: VALLE DISCARICA

Id campione interno: AGR190523A-003

Data campionamento inizio: 21/05/19 10:20
Data campionamento fine: 23/05/19 10:19

Procedura di campionamento: Campionamento effettuato da Neosis s.r.l. nella persona del Sig. Giovanni Barbuti

con verbale di campionamento n° AGR190523A

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 10/06/19

			Risultati			
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede
Ammoniaca (come NH3)	mg/m3	<0,001	-	NIOSH 6016:96	27-mag-19	L1

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Il Direttore Tecnico

Dott. Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ARIA AMBIENTE

Punto Campionato: PUNTO 2: VALLE DISCARICA

Id campione interno: AGR190523A-004

Data campionamento inizio: 21/05/19 10:20
Data campionamento fine: 23/05/19 10:19

Procedura di campionamento: Campionamento effettuato da Neosis s.r.l. nella persona del Sig. Giovanni Barbuti

con verbale di campionamento n° AGR190523A

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 10/06/19

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede		
Acido solfidrico (H2S)	ppm	<0,003	-	EPA 376.2 1978	31-mag-19	L1		

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Il Direttore Tecnico

Dott. Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ARIA AMBIENTE

Punto Campionato: PUNTO 1: MONTE DISCARICA

Id campione interno: AGR190523A-005

Data campionamento inizio: 21/05/19 10:30

Data campionamento fine: 23/05/19 10:29

Procedura di campionamento: Campionamento effettuato da Neosis s.r.l. nella persona del Sig. Giovanni Barbuti

con verbale di campionamento n° AGR190523A

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 10/06/19

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede	
PM 10	ug/m3	8,7	50	UNI EN 12341:2014	30-mag-19	L1	

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Dichiarazione di conformità:

-Il valore riscontrato è conforme a quanto previsto dal Decreto Legislativo del 13 agosto 2010 n. 155, allegato XI "Valori limite e livelli critici" punto 1 tabella valori limite.

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Il Direttore Tecnico

Dott. Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ARIA AMBIENTE

Punto Campionato: PUNTO 2: VALLE DISCARICA

Id campione interno: AGR190523A-006

Data campionamento inizio: 21/05/19 10:40

Data campionamento fine: 23/05/19 10:39

Procedura di campionamento: Campionamento effettuato da Neosis s.r.l. nella persona del Sig. Giovanni Barbuti

con verbale di campionamento n° AGR190523A

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 10/06/19

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede		
PM 10	ug/m3	9,6	50	UNI EN 12341:2014	30-mag-19	L1		

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Dichiarazione di conformità:

-Il valore riscontrato è conforme a quanto previsto dal Decreto Legislativo del 13 agosto 2010 n. 155, allegato XI "Valori limite e livelli critici" punto 1 tabella valori limite.

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Il Direttore Tecnico

Dott. Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ARIA AMBIENTE

Punto Campionato: PUNTO 1: MONTE DISCARICA

Id campione interno: AGR190523A-007

Data campionamento inizio: 21/05/19 10:45

Data campionamento fine: 21/05/19 11:23

Procedura di campionamento: Campionamento effettuato da Neosis s.r.l. nella persona del Sig. Giovanni Barbuti

con verbale di campionamento n° AGR190523A

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 11/06/19

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede		
Carbonio organico totale in forma gassosa (TVOC)	mg/Nm3	2,7	-	UNI EN 12619:2013	21-mag-19	L1		
Composti organici volatili metanici (COVM)	mg/Nm3	2,7	-	UNI EN ISO 25140:2010	21-mag-19	L1		
Composti organici volatili non metanici (COVNM)	mg/Nm3	<0,5	-	Calcolo	21-mag-19	L1		

Legenda:

L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

Sig. Luca Soffiato

Il Direttore Tecnico

Dott. Gianni Matacchione

Firmato digitalmente da

GIANNI MATACCHIONE

Il presente rapporto di prova riguarda esclusivamente il campione analizzato e non può essere riprodotto parzialmente, salvo approvazione scritta del laboratorio di prova. Il presente rapporto di prova è composto da n. 1 pagina

Cliente: Discarica per rifiuti non pericolosi di Mattie

Indirizzo: LOCALITA' CAMPOSORDO-10050 MATTIE TO

Tipologia campione: ARIA AMBIENTE

Punto Campionato: PUNTO 2: VALLE DISCARICA

Id campione interno: AGR190523A-008

Data campionamento inizio: 21/05/19 11:30

Data campionamento fine: 21/05/19 12:00

Procedura di campionamento: Campionamento effettuato da Neosis s.r.l. nella persona del Sig. Giovanni Barbuti

con verbale di campionamento n° AGR190523A

Data di ricevimento campione: 23/05/19

Data emissione rapporto di prova: 11/06/19

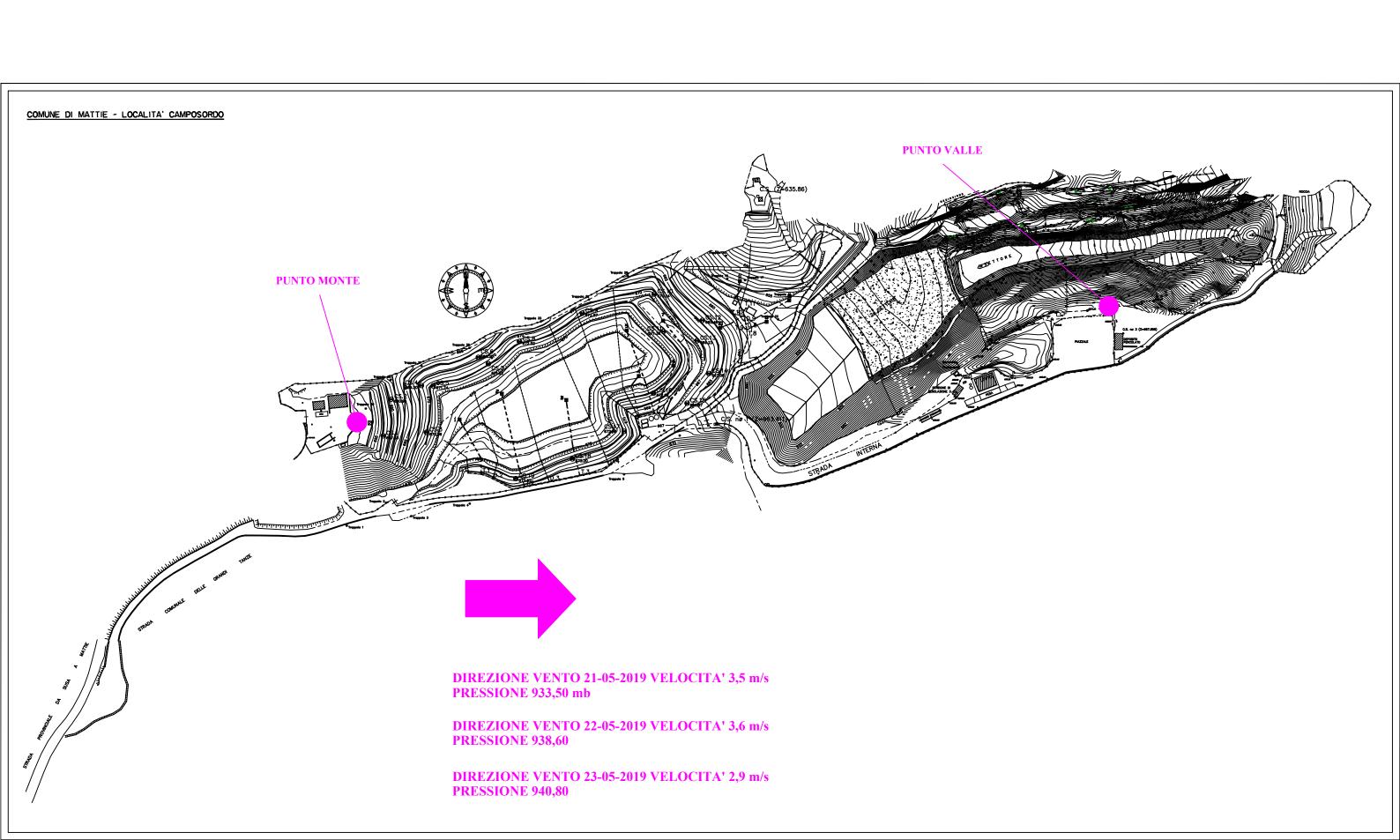
Risultati						
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Analisi	Sede
Carbonio organico totale in forma gassosa (TVOC)	mg/Nm3	1,1	-	UNI EN 12619:2013	21-mag-19	L1
Composti organici volatili metanici (COVM)	mg/Nm3	1,0	-	UNI EN ISO 25140:2010	21-mag-19	L1
Composti organici volatili non metanici (COVNM)	mg/Nm3	<0,5	-	Calcolo	21-mag-19	L1

Legenda:

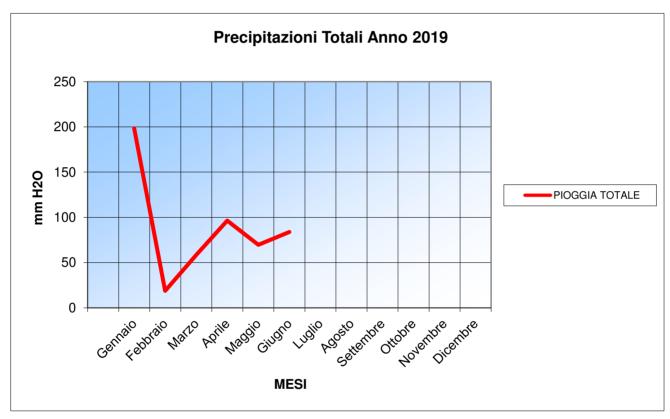
L1 = Prova Eseguita dal Laboratorio NEOSIS di MONCALIERI (TO) Via Juglaris 16/4 - ITALIA

Il Responsabile Settore Ambiente

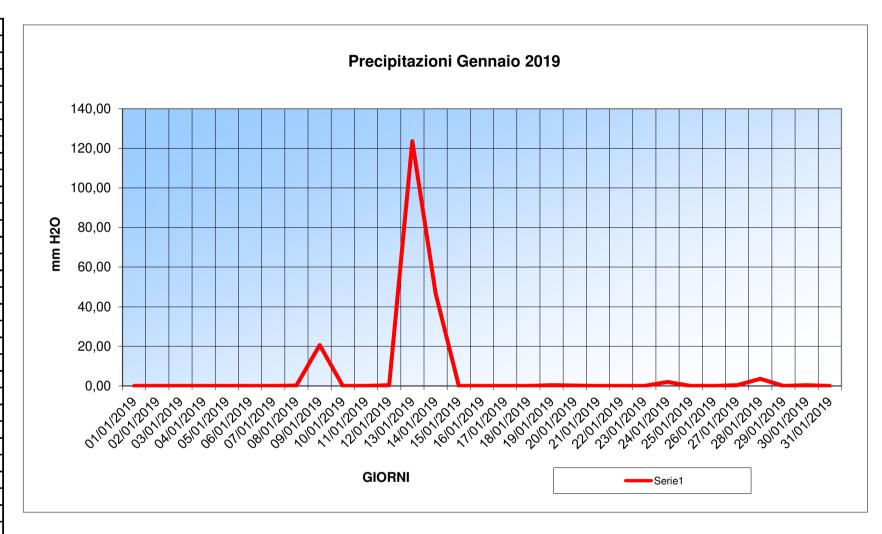
Sig. Luca Soffiato

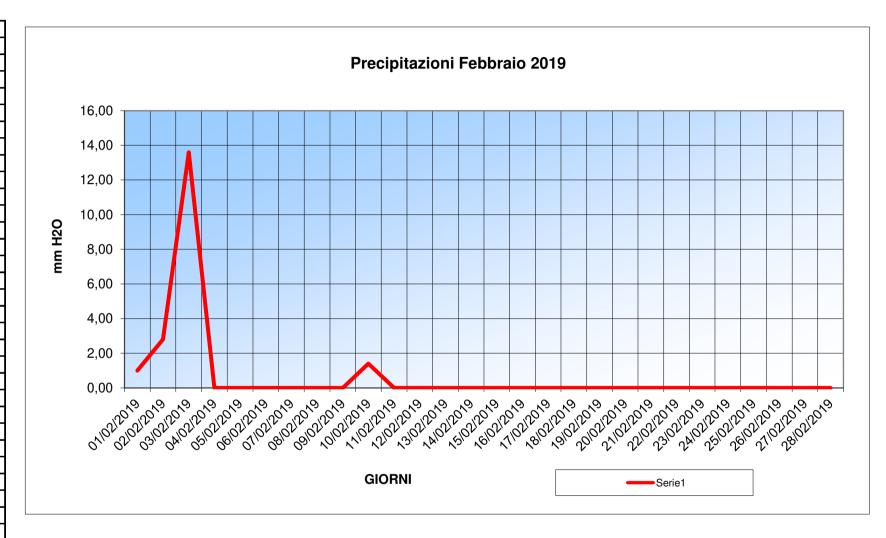

Il Direttore Tecnico

C Dott. Gianni Matacchione

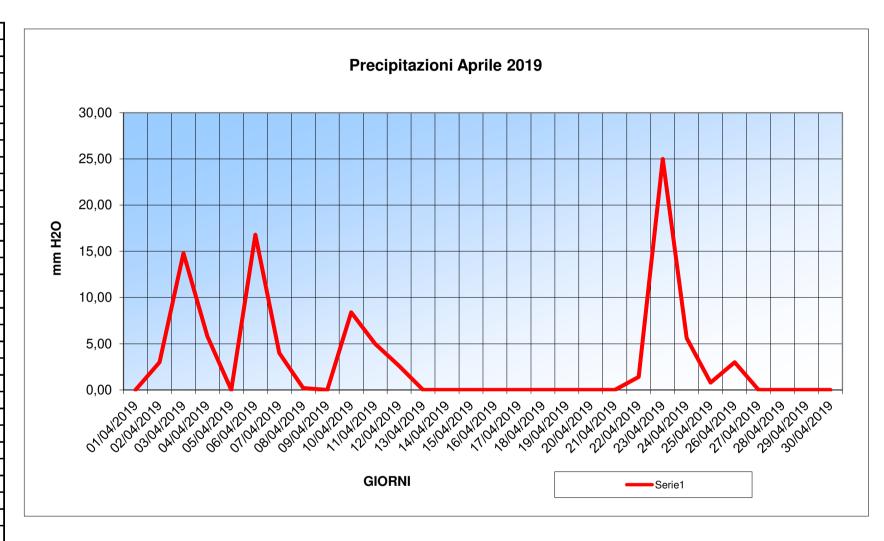

Firmato digitalmente da

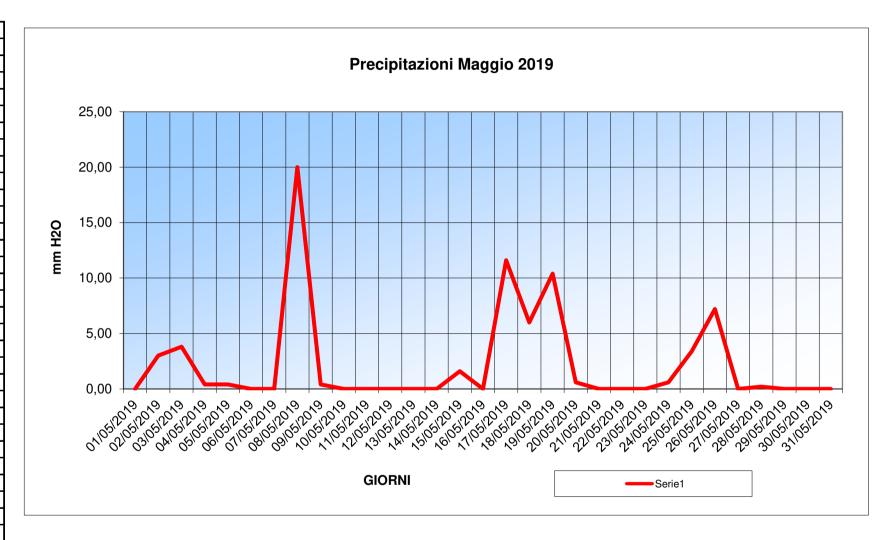
GIANNI MATACCHIONE

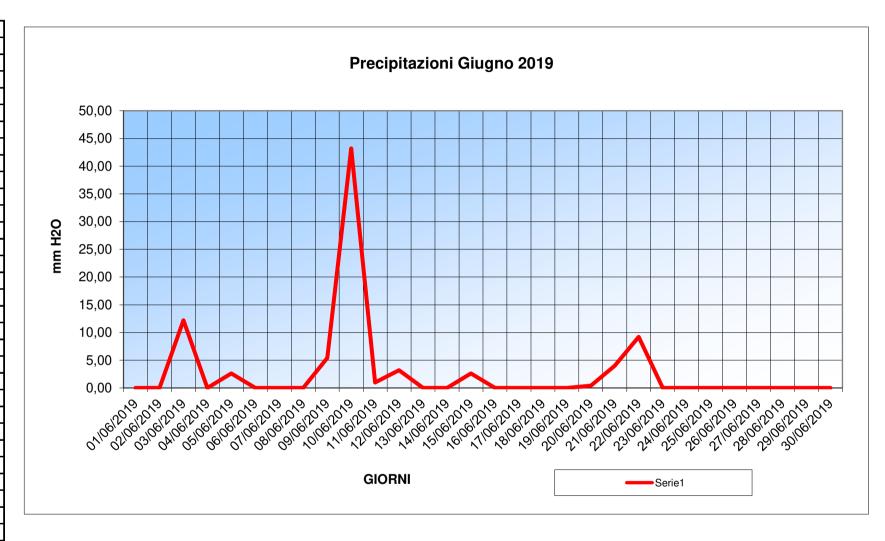

Data e ora della firma: 11/06/2019 09:50:02


MESE	PIOGGIA TOTALE
Gennaio	198,40
Febbraio	18,80
Marzo	58,40
Aprile	96,40
Maggio	69,60
Giugno	83,80
Luglio	
Agosto	
Settembre	
Ottobre	
Novembre	
Dicembre	

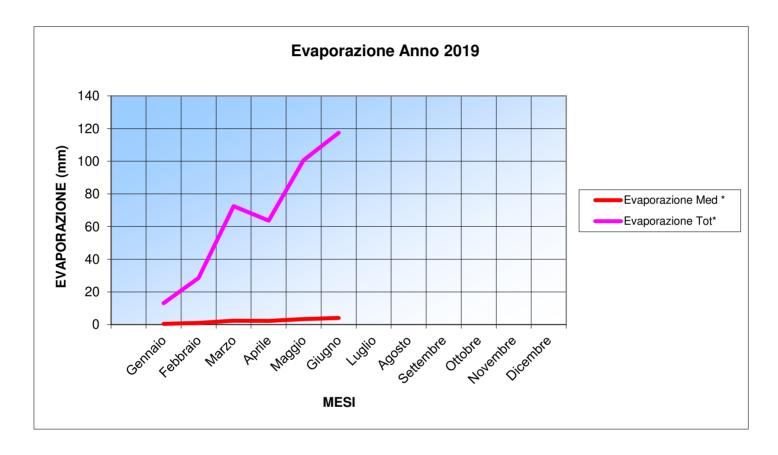
MESE	PIOGGIA TOTALE
202	
01/01/2019	0,00
02/01/2019	0,00
03/01/2019	0,00
04/01/2019	0,00
05/01/2019	0,00
06/01/2019	0,00
07/01/2019	0,00
08/01/2019	0,20
09/01/2019	20,60
10/01/2019	0,00
11/01/2019	0,00
12/01/2019	0,40
13/01/2019	123,60
14/01/2019	46,60
15/01/2019	0,00
16/01/2019	0,00
17/01/2019	0,00
18/01/2019	0,00
19/01/2019	0,40
20/01/2019	0,20
21/01/2019	0,00
22/01/2019	0,00
23/01/2019	0,00
24/01/2019	2,00
25/01/2019	0,00
26/01/2019	0,00
27/01/2019	0,40
28/01/2019	3,60
29/01/2019	0,00
30/01/2019	0,40
31/01/2019	0,00
TOT	198,40


MESE PIOGGIA TOT 01/02/2019 1,00 02/02/2019 2,80 03/02/2019 13,60 04/02/2019 0,00 05/02/2019 0,00 06/02/2019 0,00 07/02/2019 0,00 08/02/2019 0,00 09/02/2019 0,00 10/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 13/02/2019 0,00 15/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 18/02/2019 0,00 21/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00 25/02/2019 0,00 25/02/2019 0,00 25/02/2019 0,00	A
02/02/2019 2,80 03/02/2019 13,60 04/02/2019 0,00 05/02/2019 0,00 06/02/2019 0,00 07/02/2019 0,00 08/02/2019 0,00 09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 15/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 21/02/2019 0,00 21/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00 24/02/2019 0,00	ALE
02/02/2019 2,80 03/02/2019 13,60 04/02/2019 0,00 05/02/2019 0,00 06/02/2019 0,00 07/02/2019 0,00 08/02/2019 0,00 09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 15/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 21/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
03/02/2019 13,60 04/02/2019 0,00 05/02/2019 0,00 06/02/2019 0,00 07/02/2019 0,00 08/02/2019 0,00 09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 15/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
04/02/2019 0,00 05/02/2019 0,00 06/02/2019 0,00 07/02/2019 0,00 08/02/2019 0,00 09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 15/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
05/02/2019 0,00 06/02/2019 0,00 07/02/2019 0,00 08/02/2019 0,00 09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 15/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
06/02/2019 0,00 07/02/2019 0,00 08/02/2019 0,00 09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
07/02/2019 0,00 08/02/2019 0,00 09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
08/02/2019 0,00 09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00 24/02/2019 0,00	
09/02/2019 0,00 10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00 24/02/2019 0,00	
10/02/2019 1,40 11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
11/02/2019 0,00 12/02/2019 0,00 13/02/2019 0,00 14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
12/02/2019 0,00 13/02/2019 0,00 14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
13/02/2019 0,00 14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
14/02/2019 0,00 15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
15/02/2019 0,00 16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
16/02/2019 0,00 17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
17/02/2019 0,00 18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
18/02/2019 0,00 19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
19/02/2019 0,00 20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
20/02/2019 0,00 21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
21/02/2019 0,00 22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
22/02/2019 0,00 23/02/2019 0,00 24/02/2019 0,00	
23/02/2019 0,00 24/02/2019 0,00	
24/02/2019 0,00	
23/02/2013	
26/02/2019 0,00	
27/02/2019 0,00	
28/02/2019 0,00	
TOT 18,80	

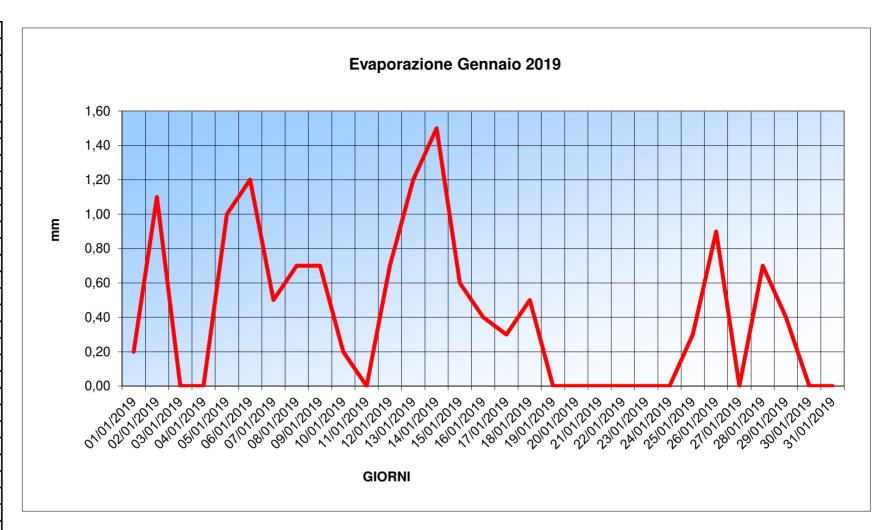

MESE	PIOGGIA TOTALE
01/03/2019	0,40
02/03/2019	0,00
03/03/2019	0,00
04/03/2019	1,20
05/03/2019	0,00
06/03/2019	0,00
07/03/2019	6,60
08/03/2019	0,00
09/03/2019	0,00
10/03/2019	0,40
11/03/2019	0,80
12/03/2019	0,00
13/03/2019	0,20
14/03/2019	21,80
15/03/2019	26,80
16/03/2019	0,00
17/03/2019	0,00
18/03/2019	0,20
19/03/2019	0,00
20/03/2019	0,00
21/03/2019	0,00
22/03/2019	0,00
23/03/2019	0,00
24/03/2019	0,00
25/03/2019	0,00
26/03/2019	0,00
27/03/2019	0,00
28/03/2019	0,00
29/03/2019	0,00
30/03/2019	0,00
31/03/2019	0,00
TOT	58,40


MESE	PIOGGIA TOTALE
01/04/2019	0,00
02/04/2019	3,00
03/04/2019	14,80
04/04/2019	5,80
05/04/2019	0,00
06/04/2019	16,80
07/04/2019	4,00
08/04/2019	0,20
09/04/2019	0,00
10/04/2019	8,40
11/04/2019	5,00
12/04/2019	2,60
13/04/2019	0,00
14/04/2019	0,00
15/04/2019	0,00
16/04/2019	0,00
17/04/2019	0,00
18/04/2019	0,00
19/04/2019	0,00
20/04/2019	0,00
21/04/2019	0,00
22/04/2019	1,40
23/04/2019	25,00
24/04/2019	5,60
25/04/2019	0,80
26/04/2019	3,00
27/04/2019	0,00
28/04/2019	0,00
29/04/2019	0,00
30/04/2019	0,00
TOT	96,40

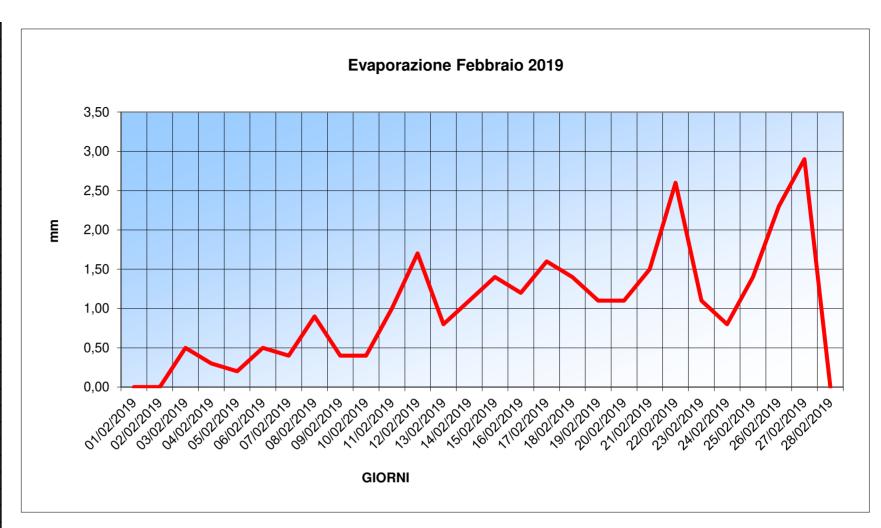
MESE	PIOGGIA TOTALE
01/05/2019	0,00
02/05/2019	3,00
03/05/2019	3,80
04/05/2019	0,40
05/05/2019	0,40
06/05/2019	0,00
07/05/2019	0,00
08/05/2019	20,00
09/05/2019	0,40
10/05/2019	0,00
11/05/2019	0,00
12/05/2019	0,00
13/05/2019	0,00
14/05/2019	0,00
15/05/2019	1,60
16/05/2019	0,00
17/05/2019	11,60
18/05/2019	6,00
19/05/2019	10,40
20/05/2019	0,60
21/05/2019	0,00
22/05/2019	0,00
23/05/2019	0,00
24/05/2019	0,60
25/05/2019	3,40
26/05/2019	7,20
27/05/2019	0,00
28/05/2019	0,20
29/05/2019	0,00
30/05/2019	0,00
31/05/2019	0,00
TOT	69,60

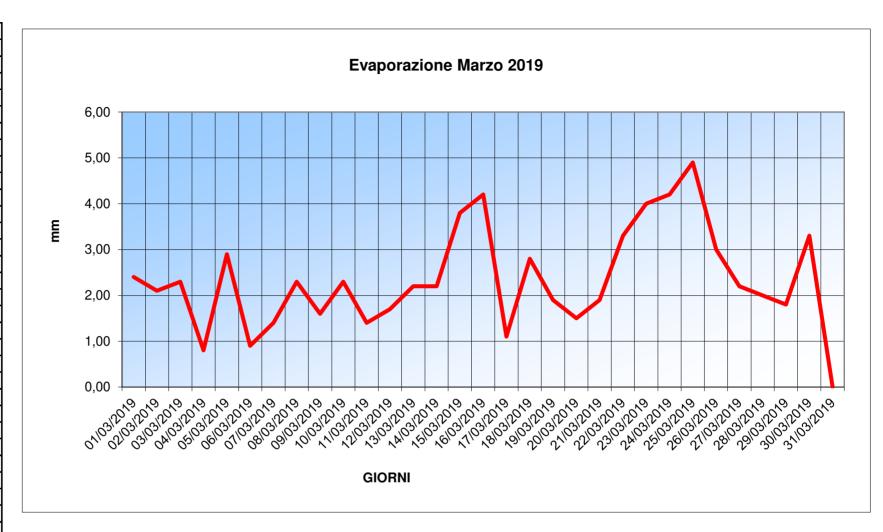


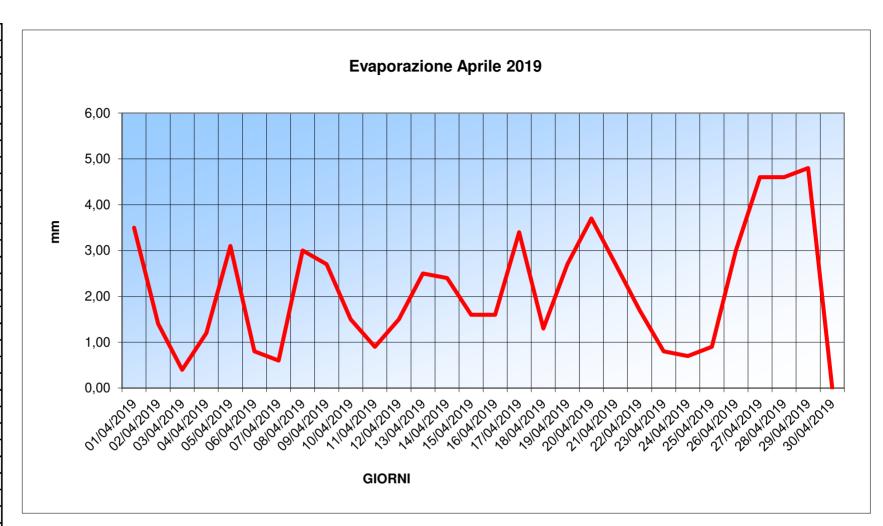
MESE	PIOGGIA TOTALE
01/06/2019	0,00
02/06/2019	0,00
03/06/2019	12,20
04/06/2019	0,00
05/06/2019	2,60
06/06/2019	0,00
07/06/2019	0,00
08/06/2019	0,00
09/06/2019	5,40
10/06/2019	43,20
11/06/2019	1,00
12/06/2019	3,20
13/06/2019	0,00
14/06/2019	0,00
15/06/2019	2,60
16/06/2019	0,00
17/06/2019	0,00
18/06/2019	0,00
19/06/2019	0,00
20/06/2019	0,40
21/06/2019	4,00
22/06/2019	9,20
23/06/2019	0,00
24/06/2019	0,00
25/06/2019	0,00
26/06/2019	0,00
27/06/2019	0,00
28/06/2019	0,00
29/06/2019	0,00
30/06/2019	0,00
TOT	83,80

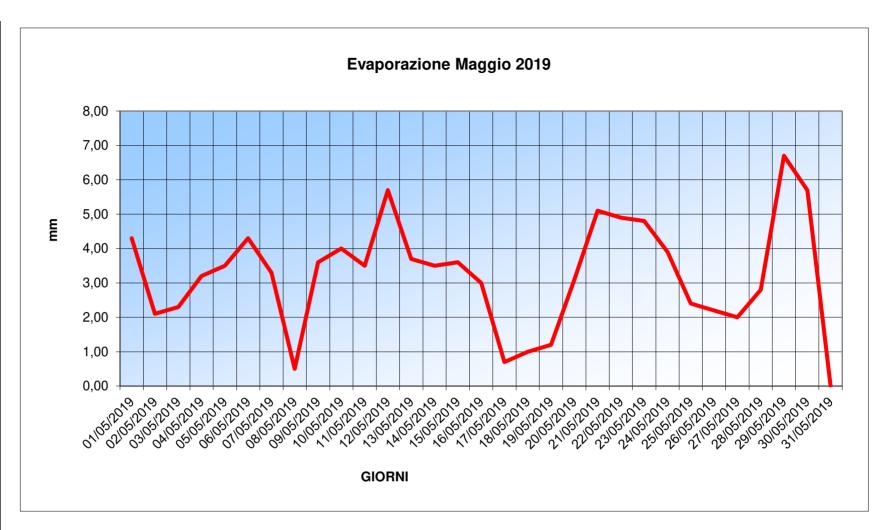


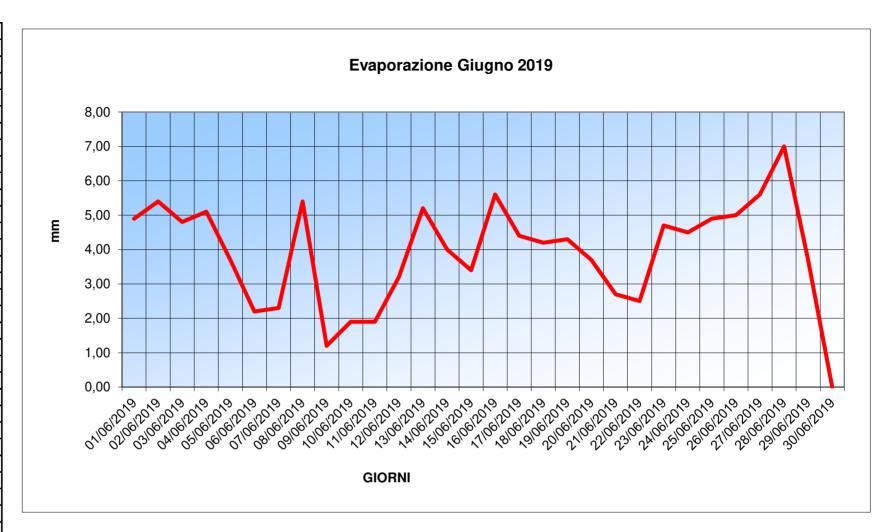
MESE	Evaporazione Med *	Evaporazione Tot*
Gennaio	0,44	13,10
Febbraio	1,06	28,60
Marzo	2,41	72,40
Aprile	2,19	63,60
Maggio	3,35	100,60
Giugno	4,05	117,40
Luglio		
Agosto		
Settembre		
Ottobre		
Novembre		
Dicembre		

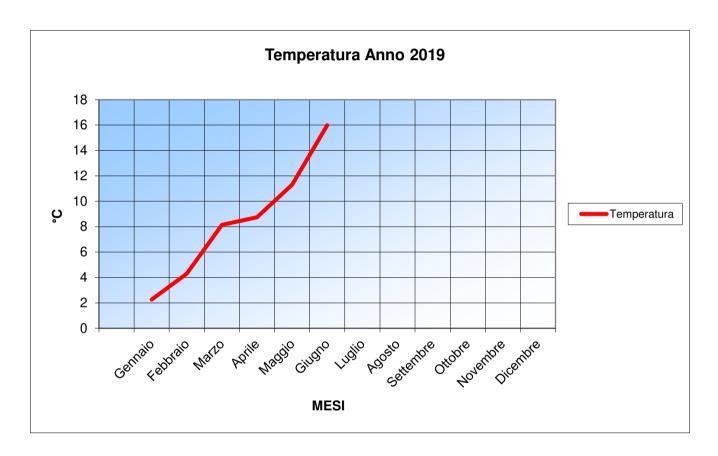

* Ricalcolata per il 2019 con il metodo TURC

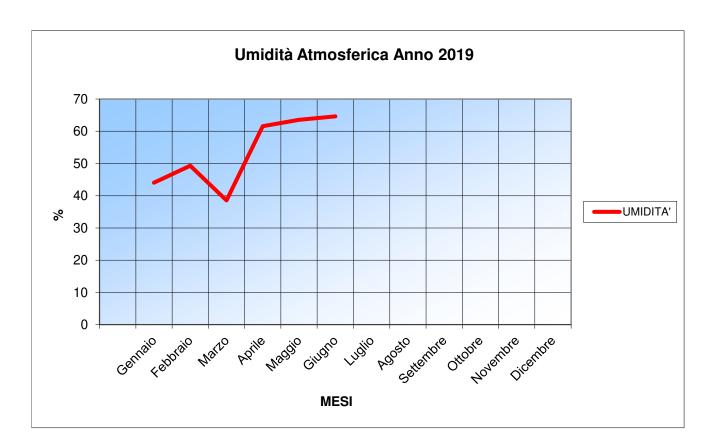

MESE	EVAP TOTALE
01/01/2019	0,20
02/01/2019	1,10
03/01/2019	0,00
04/01/2019	0,00
05/01/2019	1,00
06/01/2019	1,20
07/01/2019	0,50
08/01/2019	0,70
09/01/2019	0,70
10/01/2019	0,20
11/01/2019	0,00
12/01/2019	0,70
13/01/2019	1,20
14/01/2019	1,50
15/01/2019	0,60
16/01/2019	0,40
17/01/2019	0,30
18/01/2019	0,50
19/01/2019	0,00
20/01/2019	0,00
21/01/2019	0,00
22/01/2019	0,00
23/01/2019	0,00
24/01/2019	0,00
25/01/2019	0,30
26/01/2019	0,90
27/01/2019	0,00
28/01/2019	0,70
29/01/2019	0,40
30/01/2019	0,00
31/01/2019	0,00
TOT	13,10

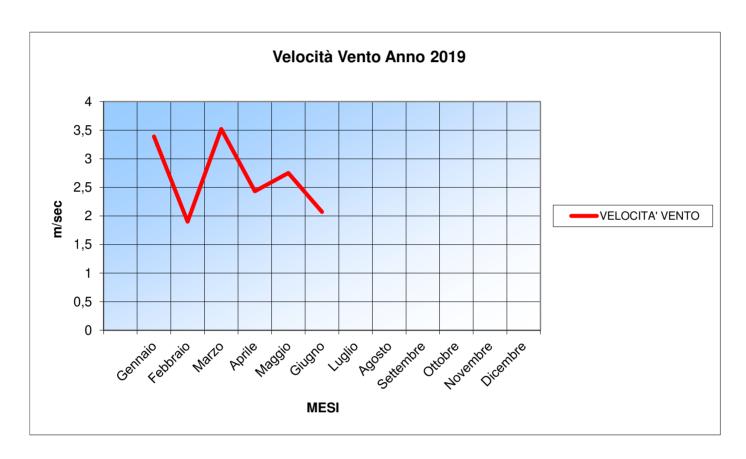

MESE	EVAP TOTALE
01/02/2019	0,00
02/02/2019	0,00
03/02/2019	0,50
04/02/2019	0,30
05/02/2019	0,20
06/02/2019	0,50
07/02/2019	0,40
08/02/2019	0,90
09/02/2019	0,40
10/02/2019	0,40
11/02/2019	1,00
12/02/2019	1,70
13/02/2019	0,80
14/02/2019	1,10
15/02/2019	1,40
16/02/2019	1,20
17/02/2019	1,60
18/02/2019	1,40
19/02/2019	1,10
20/02/2019	1,10
21/02/2019	1,50
22/02/2019	2,60
23/02/2019	1,10
24/02/2019	0,80
25/02/2019	1,40
26/02/2019	2,30
27/02/2019	2,90
28/02/2019	0,00
TOT	28,60


MESE	EVAP TOTALE
01/03/2019	2,40
02/03/2019	2,10
03/03/2019	2,30
04/03/2019	0,80
05/03/2019	2,90
06/03/2019	0,90
07/03/2019	1,40
08/03/2019	2,30
09/03/2019	1,60
10/03/2019	2,30
11/03/2019	1,40
12/03/2019	1,70
13/03/2019	2,20
14/03/2019	2,20
15/03/2019	3,80
16/03/2019	4,20
17/03/2019	1,10
18/03/2019	2,80
19/03/2019	1,90
20/03/2019	1,50
21/03/2019	1,90
22/03/2019	3,30
23/03/2019	4,00
24/03/2019	4,20
25/03/2019	4,90
26/03/2019	3,00
27/03/2019	2,20
28/03/2019	2,00
29/03/2019	1,80
30/03/2019	3,30
31/03/2019	0,00
TOT	72,40


MESE	EVAP TOTALE			
01/04/2019	3,50			
02/04/2019	1,40			
03/04/2019	0,40			
04/04/2019	1,20			
05/04/2019	3,10			
06/04/2019	0,80			
07/04/2019	0,60			
08/04/2019	3,00			
09/04/2019	2,70			
10/04/2019	1,50			
11/04/2019	0,90			
12/04/2019	1,50			
13/04/2019	2,50			
14/04/2019	2,40			
15/04/2019	1,60			
16/04/2019	1,60			
17/04/2019	3,40			
18/04/2019	1,30			
19/04/2019	2,70			
20/04/2019	3,70			
21/04/2019	2,70			
22/04/2019	1,70			
23/04/2019	0,80			
24/04/2019	0,70			
25/04/2019	0,90			
26/04/2019	3,00			
27/04/2019	4,60			
28/04/2019	4,60			
29/04/2019	4,80			
30/04/2019	0,00			
TOT	63,60			

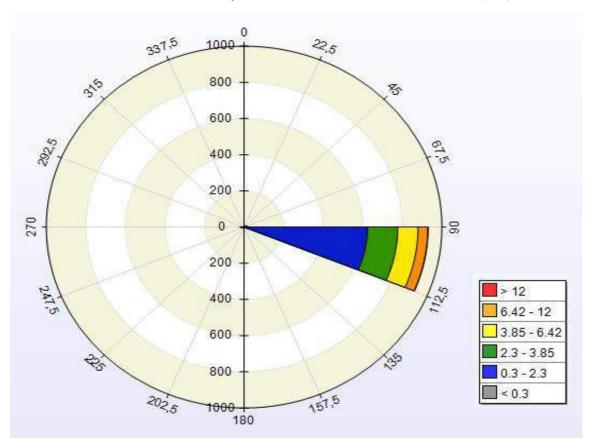

MESE	EVAP TOTALE
01/05/2019	4,30
02/05/2019	2,10
03/05/2019	2,30
04/05/2019	3,20
05/05/2019	3,50
06/05/2019	4,30
07/05/2019	3,30
08/05/2019	0,50
09/05/2019	3,60
10/05/2019	4,00
11/05/2019	3,50
12/05/2019	5,70
13/05/2019	3,70
14/05/2019	3,50
15/05/2019	3,60
16/05/2019	3,00
17/05/2019	0,70
18/05/2019	1,00
19/05/2019	1,20
20/05/2019	3,10
21/05/2019	5,10
22/05/2019	4,90
23/05/2019	4,80
24/05/2019	3,90
25/05/2019	2,40
26/05/2019	2,20
27/05/2019	2,00
28/05/2019	2,80
29/05/2019	6,70
30/05/2019	5,70
31/05/2019	0,00
TOT	100,60


MESE	EVAP TOTALE			
01/06/2019	4,90			
02/06/2019	5,40			
03/06/2019	4,80			
04/06/2019	5,10			
05/06/2019	3,70			
06/06/2019	2,20			
07/06/2019	2,30			
08/06/2019	5,40			
09/06/2019	1,20			
10/06/2019	1,90			
11/06/2019	1,90			
12/06/2019	3,20			
13/06/2019	5,20			
14/06/2019	4,00			
15/06/2019	3,40			
16/06/2019	5,60			
17/06/2019	4,40			
18/06/2019	4,20			
19/06/2019	4,30			
20/06/2019	3,70			
21/06/2019	2,70			
22/06/2019	2,50			
23/06/2019	4,70			
24/06/2019	4,50			
25/06/2019	4,90			
26/06/2019	5,00			
27/06/2019	5,60			
28/06/2019	7,00			
29/06/2019	3,70			
30/06/2019	0,00			
TOT	117,40			

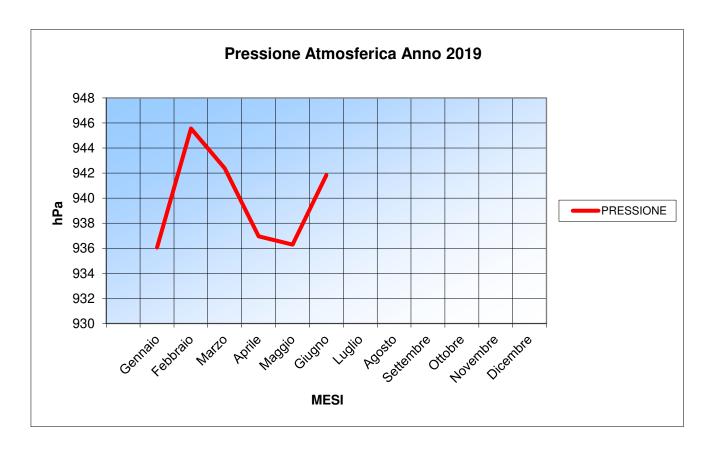

MESE	Temperatura
Gennaio	2,26
Febbraio	4,30
Marzo	8,14
Aprile	8,75
Maggio	11,31
Giugno	15,99
Luglio	
Agosto	
Settembre	
Ottobre	
Novembre	
Dicembre	

MESE	UMIDITA'
Gennaio	44,03
Febbraio	49,32
Marzo	38,55
Aprile	61,59
Maggio	63,56
Giugno	64,62
Luglio	
Agosto	
Settembre	
Ottobre	
Novembre	
Dicembre	

VELOCITA' VENTO
3,39
1,90
3,52
2,43
2,75
2,07


Station: Arforma - Discarica di Mattie Frequency distribution of wind speed (m/s) and direction Periodo elaborato:01/01/2018 00:00:00 - 30/06/2019 23:00:00

Frequency distribution of wind speed (m/s) and direction


Distribuzione delle frequenze di direzione e velocità del vento (m/s)

SETTORI	V1	V2	V3	V4	V5	V6	TOTALE
0.0 - 22.5	0	0,23	0,08	0	0	0	0,31
22.5 - 45.0	0	0,08	0	0	0	0	0,08
45.0 - 67.5	0	1	0,23	0	0	0	1,23
67.5 - 90.0	0	13,33	2,08	1,08	0	0	16,49
90.0 - 112.5	0	623,76	152,84	102,84	49,15	2	930,59
112.5 - 135.0	0	0,62	0	0,31	0,15	0	1,08
135.0 - 157.5	0	0,31	0	0	0	0	0,31
157.5 - 180.0	0	0,54	0	0	0	0	0,54
180.0 - 202.5	0	1,16	0	0	0	0	1,16
202.5 - 225.0	0	3,24	0,08	0	0	0	3,31
225.0 - 247.5	0	3,08	0,08	0,08	0,08	0	3,31
247.5 - 270.0	0	3,54	0,62	3,54	6,32	0,15	14,17
270.0 - 292.5	0	1,39	0,15	0,77	1,16	0,15	3,62
292.5 - 315.0	0	0,31	0	0,08	0	0	0,39
315.0 - 337.5	0	0	0	0	0	0	0
337.5 - 360.0	0	0	0	0	0	0	0
VARIABILE	0	0	0	0	0	0	0
CALME	23,42	0	0	0	0	0	23,42
TOTALE	23,42	652,57	156,15	108,7	56,85	2,31	1000

Distribuzione delle frequenze di direzione e velocità del vento (m/s)

MESE	PRESSIONE
Gennaio	936,06
Febbraio	945,56
Marzo	942,39
Aprile	936,95
Maggio	936,30
Giugno	941,84
Luglio	
Agosto	
Settembre	
Ottobre	
Novembre	
Dicembre	

