

Giuseppina FERRANTE

Piero ARIANOS

DISCARICA DI MATTIE

Ing.

Geom.

1) PREMESSA

Con autorizzazione41-91886/1999 del 26/05/1999 la Giunta Provinciale di Torino autorizzava la costruzione del terzo lotto della discarica per rifiuti urbani di Mattie.

Con provvedimento 134-402873/2005 del 23/09/2005 la Provincia di Torino approvava il piano di adeguamento al D.Lgs. 36/2003 della discarica per rifiuti non pericolosi di Mattie, rinnovandone peraltro l'autorizzazione fino al 16/10/2008.

Nell'allegato E del suddetto documento vengono calendarizzati molti monitoraggi ambientali e viene richiesta una relazione semestrale sul funzionamento dell'impianto.

Con provvedimento 81-24161/2008 del 31/03/2008 la Provincia di Torino rilasciava l'Autorizzazione Integrata Ambientale. Il suddetto documento, nell'allegato F prevedeva la realizzazione della presente relazione.

Con provvedimento 73-9453/2014 del26/03/2014 la Provincia di Torino rinnovava l'Autorizzazione Integrata Ambientale 26/03/2019 mantenendo le prescrizioni già in essere relativamente ai monitoraggi ed alle relazioni quadrimestrali, semestrali ed annuali.

A tal fine il Geostudio ha redatto il presente documento allegando copia delle analisi effettuate sulle varie matrici.

2) ANALISI E MONITORAGGI

1.a) Monitoraggio acque superficiali

Si allega copia del certificato analitico prodotto dal Laboratorio NSA (Allegato 1) relativo al mese di Marzo 2018 (1° trimestre). I referti relativi ai Punti 1Est – Lato roccia e Punto 3 Nord presentano un valore lievemente anomalo sull'Azoto Nitrico (rispettivamente 31,3 mg/l e 45,3 mg/l). Tutti gli altri parametri sono risultati inferiori ai limiti. In questo caso si è ipotizzata la presenza di tracce di concime all'interno delle canaline. A seguito di pulizia si è effettuato quindi un nuovo campionamento che ha mostrato il pieno rispetto dei limiti su entrambi i punti (analisi del 07/05/18 allegate alla presente).

2) Monitoraggio del percolato

Si allegano copie dei certificati emessi dal laboratorio NSA inerenti alla composizione chimica del percolato (Allegato 2) e delle tabelle sull'andamento dei livelli di percolato all'interno dei settori (Allegato 3).

3.a) Monitoraggio del biogas nel terreno

Tabulati delle rilevazioni sul biogas presente nel suolo non saturo. (Allegato 4).

3.c) Analisi del biogas nel sistema di estrazione forzata

Tabulati delle rilevazioni sul biogas presente nella rete del biogas redatti da Asja Ambiente. (Allegato 5).

4) Monitoraggio della qualità dell'aria

Si allega copia dei certificati emessi dal laboratorio NSA riferito all'analisi sulla qualità dell'aria effettuati in Marzo 2018 (1° trimestre).

RAPPORTO DI PROVA n. 18CP0762-003

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 2 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: ACQUA REFLUA

Id campione cliente: Punto 2 - Vasca prima pioggia

Id campione interno: 18CP0762-003

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data campionamento inizio: 19/03/18

Data di ricevimento campione: 20/03/18

Data emissione rapporto di prova: 05/04/18

	Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
рН	рН	8,03±0,04	5,5-9,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	22-mar-18				
Solidi sospesi totali	mg/l	4,4±0,9	80	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	23-mar-18				
COD Domanda chimica di ossigeno (come O2)	mg/l O2	10,4±2,1	160	ISO 15705:2002 - UV-VIS	22-mar-18				
Cloruri	mg/l	424±32	1200	APAT CNR IRSA 4020 Man. 29 2003 - IC	23-mar-18				
Azoto ammoniacale (come NH4)	mg/l	<0,03	15	M.U. 2363:09 - UV-VIS	29-mar-18				
Azoto nitrico (come N)	mg/l	0,69±0,02	20	APAT CNR IRSA 4020 Man. 29 2003 - IC	22-mar-18				
Idrocarburi totali	mg/l	<0,04	5	APAT CNR IRSA 5160 B2 Man. 29 2003 - FT-IR	27-mar-18				
Cromo totale	mg/l	<0,012	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				
Ferro	mg/l	1,02±0,05	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				
Manganese	mg/l	0,100±0,031	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				
Nichel	mg/l	<0,012	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				

RAPPORTO DI PROVA n. 18CP0762-003

Pag. 2/2

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Piombo	mg/l	<0,012	0,2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18			
Rame	mg/l	<0,012	0,1	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18			

L'incertezza estesa (U) e/o l'Interv.Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

Note - Non oggetto dell'accreditamento ACCREDIA:

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Giudizio:

Limitatamente ai parametri determinati si può affermare che il campione in esame è conforme a quanto previsto dal D.Lgs.152/06, Parte III, All.5, Tab.3 per gli scarichi in acqua superficiale.

Il Direttore Tecnico

Dott. Aldo Grasso

RAPPORTO DI PROVA n. 18CP0762-002

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 2 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: ACQUA REFLUA

Id campione cliente: Punto 1 Est - Lato roccia

Id campione interno: 18CP0762-002

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data campionamento inizio: 19/03/18

Data di ricevimento campione: 20/03/18

Data emissione rapporto di prova: 05/04/18

	Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
рН	pН	8,23±0,04	5,5-9,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	22-mar-18				
Solidi sospesi totali	mg/l	5,2±1,1	80	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	23-mar-18				
COD Domanda chimica di ossigeno (come O2)	mg/l O2	38,9±7,7	160	ISO 15705:2002 - UV-VIS	22-mar-18				
Cloruri	mg/l	99,6±7,4	1200	APAT CNR IRSA 4020 Man. 29 2003 - IC	23-mar-18				
Azoto ammoniacale (come NH4)	mg/l	0,09±0,01	15	M.U. 2363:09 - UV-VIS	29-mar-18				
Azoto nitrico (come N)	mg/l	31,3±0,3	20	APAT CNR IRSA 4020 Man. 29 2003 - IC	23-mar-18				
Idrocarburi totali	mg/l	0,37±0,08	5	APAT CNR IRSA 5160 B2 Man. 29 2003 - FT-IR	27-mar-18				
Cromo totale	mg/l	<0,012	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				
Ferro	mg/l	0,085±0,017	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				
Manganese	mg/l	<0,012	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				
Nichel	mg/l	0,012±0,003	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				

RAPPORTO DI PROVA n. 18CP0762-002

Pag. 2/2

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Piombo	mg/l	<0,012	0,2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18			
Rame	mg/l	0,016±0,002	0,1	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18			

L'incertezza estesa (U) e/o l'Interv.Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

Note - Non oggetto dell'accreditamento ACCREDIA:

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Giudizio:

Limitatamente ai parametri determinati si può affermare che il campione in esame non è conforme, per i parametri evidenziati, a quanto previsto dal D.Lgs.152/06, Parte III, All.5, Tab.3 per gli scarichi in acqua superficiale.

Il Direttore Tecnico

Dott. Aldo Grasso

RAPPORTO DI PROVA n. 18CP0762-001

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 2 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: ACQUA REFLUA

Id campione cliente: Punto 1 Est - Strada sterrata

Id campione interno: 18CP0762-001

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data campionamento inizio: 19/03/18

Data di ricevimento campione: 20/03/18

Data emissione rapporto di prova: 05/04/18

	Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
рН	pН	7,13±0,04	5,5-9,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	22-mar-18				
Solidi sospesi totali	mg/l	5,4±1,2	80	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	23-mar-18				
COD Domanda chimica di ossigeno (come O2)	mg/l O2	29,1±5,8	160	ISO 15705:2002 - UV-VIS	22-mar-18				
Cloruri	mg/l	9,7±0,7	1200	APAT CNR IRSA 4020 Man. 29 2003 - IC	22-mar-18				
Azoto ammoniacale (come NH4)	mg/l	1,06±0,16	15	M.U. 2363:09 - UV-VIS	29-mar-18				
Azoto nitrico (come N)	mg/l	4,12±0,03	20	APAT CNR IRSA 4020 Man. 29 2003 - IC	22-mar-18				
Idrocarburi totali	mg/l	0,43±0,09	5	APAT CNR IRSA 5160 B2 Man. 29 2003 - FT-IR	27-mar-18				
Cromo totale	mg/l	<0,012	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OFS	27-mar-18				
Ferro	mg/l	0,420±0,061	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				
Manganese	mg/l	0,023±0,007	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				
Nichel	mg/l	<0,012	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18				

RAPPORTO DI PROVA n. 18CP0762-001

Pag. 2/2

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Piombo	mg/l	<0,012	0,2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18			
Rame	mg/l	0,028±0,003	0,1	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18			

L'incertezza estesa (U) e/o l'Interv.Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

Note - Non oggetto dell'accreditamento ACCREDIA:

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Giudizio:

Limitatamente ai parametri determinati si può affermare che il campione in esame è conforme a quanto previsto dal D.Lgs.152/06, Parte III, All.5, Tab.3 per gli scarichi in acqua superficiale.

Il Direttore Tecnico

Dott. Aldo Grasso

RAPPORTO DI PROVA n. 18CP0762-004

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 2 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: ACQUA REFLUA

Id campione cliente: Punto 3 Nord
Id campione interno: 18CP0762-004

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data campionamento inizio: 19/03/18

Data di ricevimento campione: 20/03/18

Data emissione rapporto di prova: 05/04/18

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi		
рН	pН	8,21±0,04	5,5-9,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	22-mar-18		
Solidi sospesi totali	mg/l	3,2±0,7	80	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	23-mar-18		
COD Domanda chimica di ossigeno (come O2)	mg/l O2	30,1±6,1	160	ISO 15705:2002 - UV-VIS	22-mar-18		
Cloruri	mg/l	27,5±2,1	1200	APAT CNR IRSA 4020 Man. 29 2003 - IC	22-mar-18		
Azoto ammoniacale (come NH4)	mg/l	0,07±0,01	15	M.U. 2363:09 - UV-VIS	29-mar-18		
Azoto nitrico (come N)	mg/l	45,3±0,4	20	APAT CNR IRSA 4020 Man. 29 2003 - IC	23-mar-18		
Idrocarburi totali	mg/l	<0,04	5	APAT CNR IRSA 5160 B2 Man. 29 2003 - FT-IR	27-mar-18		
Cromo totale	mg/l	<0,012	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18		
Ferro	mg/l	0,051±0,011	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18		
Manganese	mg/l	0,012±0,004	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18		
Nichel	mg/l	<0,012	2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18		

RAPPORTO DI PROVA n. 18CP0762-004

Pag. 2/2

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Piombo	mg/l	<0,012	0,2	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18			
Rame	mg/l	<0,012	0,1	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	27-mar-18			

L'incertezza estesa (U) e/o l'Interv.Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

Note - Non oggetto dell'accreditamento ACCREDIA:

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Giudizio:

Limitatamente ai parametri determinati si può affermare che il campione in esame non è conforme, per i parametri evidenziati, a quanto previsto dal D.Lgs.152/06, Parte III, All.5, Tab.3 per gli scarichi in acqua superficiale.

Il Direttore Tecnico

Dott. Aldo Grasso

RAPPORTO DI PROVA n. 18CP0843-001

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 8 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: PERCOLATO

Id campione cliente: Lotto I

Id campione interno: 18CP0843-001

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data di ricevimento campione: 23/03/18

Data emissione rapporto di prova: 18/04/18

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Colore	-	Non percettibile con dil 1:50	-	APAT CNR IRSA 2020A Man. 29 2003 - Visivo	04-apr-18			
Odore	-	Non molesto con dil 1:50	-	APAT CNR IRSA 2050 Man. 29 2003 - Olfattometrico	04-apr-18			
Stato fisico*	-	Liquido	-	MPI 131 rev 0 - Visivo	04-apr-18			
Punto di infiammabilità (vaso chiuso)*	°C	>100	60	UNI EN ISO 3679:2005 - Analizzatore P.I.	04-apr-18			
Carbonio organico totale (TOC)	mg/l	118±53	-	UNI EN 1484:1999 - Analizzatore elementare	04-apr-18			
рН	pН	7,8±0,1	2-11,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	04-apr-18			
Conducibilità a 20°C	μS/cm	2400±52	-	APAT CNR IRSA 2030 Man. 29 2003 - Conduttimetrico	04-apr-18			
COD Domanda chimica di ossigeno (come O2)	mg/l O2	205±41	-	ISO 15705:2002 - UV-VIS	04-apr-18			
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	134	-	UNI EN ISO 1899-1:2001 - Elettrochimico	09-apr-18			
Solidi sospesi totali	mg/l	44,8±9,6	-	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	06-apr-18			
Densità*	g/ml	0,99	-	MPI 129 rev 0 - Gravimetrico	04-apr-18			

RAPPORTO DI PROVA n. 18CP0843-001

Pag. 2/8

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi		
Materiali grossolani	P/A	Assenti	-	D.Lgs. 319/1976 10/05/1976 G.U. 141 29/05/1976 Tabella A punto 5 + APAT CNR IRSA 2090 Man. 29 2003 - Visivo	04-apr-18		
Solidi totali - Residuo secco a 105°C*	%	0,16	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	04-apr-18		
Solidi totali fissi - Residuo a 600°C*	%	0,08	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	05-apr-18		
Alluminio	mg/l	0,088±0,021	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Arsenico	mg/l	<0,008	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Antimonio	mg/l	<0,030	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Bario	mg/l	0,048±0,006	225000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Berillio	mg/l	<0,015	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Boro	mg/l	0,821±0,031	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Cadmio	mg/l	<0,0030	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Cobalto	mg/l	0,023±0,004	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Cromo totale	mg/l	0,056±0,005	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Cromo VI	mg/l	<0,20	1000	APAT CNR IRSA 3150C Man. 29 2003 - UV-VIS	05-apr-18		
Ferro	mg/l	5,69±0,15	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Magnesio	mg/l	102±2	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Fosforo totale (come P)	mg/l	1,31±0,04	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Manganese	mg/l	0,790±0,137	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Mercurio*	mg/l	<0,001	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Molibdeno	mg/l	<0,015	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Nichel	mg/l	0,295±0,066	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		

RAPPORTO DI PROVA n. 18CP0843-001

Pag. 3/8

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi		
Piombo	mg/l	0,306±0,022	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Rame	mg/l	18,1±0,4	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Selenio	mg/l	<0,008	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Stagno	mg/l	0,050±0,015	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Tallio	mg/l	<0,015	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Tellurio*	mg/l	<0,015	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Vanadio	mg/l	<0,015	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Zinco	mg/l	7,83±0,18	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Cianuri totali (come CN)	mg/l	0,10±0,01	1000	M.U. 2251:08 - UV-VIS	05-apr-18		
Fenolo	mg/l	<0,0001	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Metilfenoli (o-, m-, p-)	mg/l	<0,0001	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
2-clorofenolo	mg/l	<0,0001	225000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
2,4-diclorofenolo	mg/l	<0,0001	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
2,4,6-triclorofenolo	mg/l	<0,0001	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Pentaclorofenolo	mg/l	<0,0001	5000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Formaldeide*	mg/l	<0,4	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18		
Acroleina*	mg/l	<0,4	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18		
Acetaldeide*	mg/l	<0,4	10000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18		
Benzene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
1,3-butadiene*	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		

RAPPORTO DI PROVA n. 18CP0843-001

Pag. 4/8

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi		
Toluene	mg/l	<0,005	30000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Etilbenzene	mg/l	<0,005	100000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Stirene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Metil Tert Butil Etere (MTBE)*	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Carbonio tetracloruro	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Tricloroetilene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Tetracloroetilene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Triclorometano	mg/l	<0,001	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Esaclorobutadiene	mg/l	<0,001	100	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Diclorometano	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Clorometano	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Cloruro di vinile	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
1,2-dicloroetano	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
1,1-dicloroetilene	mg/l	<0,0005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Solventi organici azotati	mg/l	<0,0001	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Tribromometano	mg/l	<0,001	35000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
1,2-dibromoetano	mg/l	<0,0001	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Dibromoclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Bromodiclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		
Benzo(a)antracene	mg/l	<0,0001	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		

RAPPORTO DI PROVA n. 18CP0843-001

Pag. 5/8

		Ri	sultati		
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi
Benzo(a)pirene	mg/l	<0,0001	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Benzo(b)fluorantene	mg/l	<0,0001	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Benzo(j)fluorantene*	mg/l	<0,0001	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Benzo(k)fluorantene	mg/l	<0,0001	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Benzo(e)pirene	mg/l	<0,0001	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Dibenzo(a,h)antracene	mg/l	<0,0001	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Crisene	mg/l	<0,0001	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Idrocarburi policiclici aromatici (altri)*	mg/l	<0,0001	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Aldrin	mg/l	<0,0001	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Dieldrin	mg/l	<0,0001	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Endrin	mg/l	<0,0001	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Isodrin	mg/l	<0,0001	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Pesticidi fosforati	mg/l	<0,0001	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Pesticidi totali (esclusi i fosforati)	mg/l	<0,0001	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Idrocarburi Leggeri C<12*	μg/l	<1,500	25000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18
Idrocarburi Pesanti C>12*	mg/l	<0,50	250000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Idrocarburi totali (somma)*	mg/l	<1,50	250000	MPI 130 rev 0 - Calcolo	11-apr-18
Grassi e olii animali/vegetali	mg/l	0,24±0,06	-	APAT CNR IRSA 5160 B1 Man. 29 2003 + APAT CNR IRSA 5160 B2 Man. 29 2003 - FT-IR	04-apr-18
PCB totali*	mg/l	<0,0001	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Zolfo totale*	%	0,07	-	EPA 5050 1994 + EPA 9056A 2007 - IC	05-apr-18

RAPPORTO DI PROVA n. 18CP0843-001

Pag. 6/8

	Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Solfiti (come SO3)	mg/l	<1,0	-	APAT CNR IRSA 4150B Man. 29 2003 - IC	05-apr-18			
Solfuri	mg/l	<1,0	-	APHA Standard Methods for the Examination of Water and Wastewater ed 22nd 2012 4500-S - UV-VIS	05-apr-18			
Solfati (come SO4)	mg/l	166±6	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Cloruri	mg/l	342±25	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Fluoruri	mg/l	1,2±0,3	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Aldeidi totali*	mg/l	<0,4	-	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18			
Azoto ammoniacale (come NH4)	mg/l	285±33	-	M.U. 2363:09 - UV-VIS	04-apr-18			
Azoto nitrico (come N)	mg/l	42,1±0,3	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Azoto nitroso (come N)	mg/l	<0,30	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Azoto totale (come N)*	mg/l	299	-	APAT CNR IRSA 4060 Man. 29 2003 - UV-VIS	04-apr-18			
Tensioattivi totali*	mg/l	2,97	-	MPI 035 rev 0 - UV-VIS	04-apr-18			
Tensioattivi anionici*	mg/l	1,13	-	APAT CNR IRSA 5170 Man. 29 2003 - UV-VIS	05-apr-18			
Tensioattivi non ionici (TBPE)*	mg/l	0,82	-	MPI 035 rev 0 - UV-VIS	05-apr-18			
Tensioattivi cationici*	mg/l	1,02	-	MPI 035 rev 0 - UV-VIS	05-apr-18			
Xileni	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			

RAPPORTO DI PROVA n. 18CP0843-001

Pag. 7/8

L'incertezza estesa (U) e/o l'Interv. Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

* = Parametri non accreditati da Accredia

Note - Non oggetto dell'accreditamento ACCREDIA:

Al fine dell'attribuzione delle caratteristiche di pericolo, in riferimento ai dettami del Reg. UE 1357/2014, si procede come sottoindicato:

per l'attribuzione della caratteristica HP3 si procede sperimentalmente, ove possibile, o sulla base delle informazioni fornite dal Produttore:

per l'attribuzione delle caratteristiche HP4, HP5, HP6, HP7, HP8, HP10, HP11 e HP13, ci si riferisce alle concentrazioni dei composti riscontrati nel rifiuto e li si confronta con gli eventuali valori soglia e limite del Reg. UE 1357/2014, sulla base dell'indicazione di pericolo e il codice di classe specifici della sostanza riportati nell'elenco delle sostanze pericolose della tabella 3.1 del Reg. UE 1272/2008 e smi, nell'ambito della valutazione sono prese in considerazione esclusivamente le sostanze armonizzate all'interno del Reg. UE 1272/2008 e smi.; per le caratteristiche di pericolo HP1, HP2, HP9, HP12, HP15, ci si basa sulle informazioni fornite dal produttore ed in base al ciclo produttivo ed alle sostanze utilizzate e dichiarate alla consegna del campione mediante compilazione del mod.13B. Nel caso di presenza nel rifiuto di idrocarburi di origine non nota, visti i dati di viscosità cinematica totale a 40°C di oli lubrificanti, diatermici ed idraulici comunemente utilizzati in ambito industriale, non si fa riferimento al codice di indicazione di pericolo H304 per l'attribuzione della caratteristica di pericolo HP5. Per l'attribuzione della classe di pericolo HP14 il Laboratorio utilizza i criteri definiti dalla Direttiva Europea 1967/548/CE. Per Idrocarburi leggeri e pesanti si intendono i composti alifatici e aromatici, determinabili con la tecnica analitica dichiarata esclusi quelli singolarmente individuati, costituiti esclusivamente da Carbonio e Idrogeno. Non sono pertanto quantificati, all'interno di tali specie, i composti idrocarburici sostituiti.

I limiti riportati, per i metalli analizzati sul campione tal quale, hanno valore puramente indicativo qualora non si conosca il ciclo produttivo da cui si origina il rifiuto e si riferiscono a uno dei composti più pericolosi che il metallo può formare. Sulla base delle informazioni disponibili, per l'attribuzione dell'eventuale pericolosità al rifiuto e la relativa classe di pericolo il valore limite di riferimento, riportato per i metalli e per gli idrocarburi, può essere differente da quello indicato o non espresso; qualora sul mod.13B il Produttore indichi la presenza nel rifiuto di metalli in forma massiva, ai metalli riscontrati in analisi non sono applicati i limiti di concentrazione di cui all'allegato III della Direttiva 2008/98/CE così come indicato al punto 2.3 della Dir. 2014/955/UE fatto salvo eventuali ulteriori valutazioni effettuate in sede di validazione dei dati.

I valori analitici riportati nel presente Rapporto di Prova sono riferiti al campione tal quale nelle condizioni di consegna al Laboratorio.

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Tutti i limiti di legge, ad esclusione di quelli riferiti ai parametri "Punto di infiammabilità (vaso chiuso)" e "pH", sono espressi in mg/Kg.

Giudizio:

Ai fini della classificazione i parametri sono stati selezionati sulla base degli inquinanti industriali di maggior uso e con il Committente sulla base della conoscenza del processo chimico, del ciclo produttivo coinvolto e delle sostanze utilizzate fornite dal Produttore mediante Mod.13B.

- In relazione al catalogo europeo dei rifiuti, come riportato nella Decisione 2014/955/UE, ed in riferimento al Regolamento UE 1357/2014, all'art. 6-quater L.13/2009, dal D.M. 4/08/2010 Tab.A2, viste inoltre le note emesse dal ISS con prot.n°036565 (1° e 2° integrazione); fermo restando la rappresentatività del campione, limitatamente ai parametri determinati, in base ai risultati ottenuti e dalla dichiarazione/informazioni ricevute dal Produttore o Detentore, al rifiuto è attribuibile il codice CER 19 07 03 "Percolato di discarica, diverso da quello di cui alla voce 19 07 02*" e pertanto il medesimo è classificabile come rifiuto

LAB N° 0809 RAPPORTO DI PROVA n. 18CP0843-001

Pag. 8/8

speciale non pericoloso.

RAPPORTO DI PROVA n. 18CP0843-005

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 8 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: PERCOLATO

Id campione cliente: Lotto III - Terzo settore

Id campione interno: 18CP0843-005

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data di ricevimento campione: 23/03/18

Data emissione rapporto di prova: 18/04/18

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Colore	-	Non percettibile con dil 1:200	-	APAT CNR IRSA 2020A Man. 29 2003 - Visivo	04-apr-18			
Odore	-	Non molesto con dil 1:200	-	APAT CNR IRSA 2050 Man. 29 2003 - Olfattometrico	04-apr-18			
Stato fisico*	-	Liquido	-	MPI 131 rev 0 - Visivo	04-apr-18			
Punto di infiammabilità (vaso chiuso)*	°C	>100	60	UNI EN ISO 3679:2005 - Analizzatore P.I.	04-apr-18			
Carbonio organico totale (TOC)	mg/l	1241±527	-	UNI EN 1484:1999 - Analizzatore elementare	04-apr-18			
рН	pН	8,2±0,1	2-11,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	04-apr-18			
Conducibilità a 20°C	μS/cm	24500±528	-	APAT CNR IRSA 2030 Man. 29 2003 - Conduttimetrico	04-apr-18			
COD Domanda chimica di ossigeno (come O2)	mg/l O2	6120±1001	-	ISO 15705:2002 - UV-VIS	04-apr-18			
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	4200	-	UNI EN ISO 1899-1:2001 - Elettrochimico	09-apr-18			
Solidi sospesi totali	mg/l	208±44	-	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	06-apr-18			
Densità*	g/ml	1,04	-	MPI 129 rev 0 - Gravimetrico	04-apr-18			

RAPPORTO DI PROVA n. 18CP0843-005

Pag. 2/8

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Materiali grossolani	P/A	Assenti	-	D.Lgs. 319/1976 10/05/1976 G.U. 141 29/05/1976 Tabella A punto 5 + APAT CNR IRSA 2090 Man. 29 2003 - Visivo	04-apr-18			
Solidi totali - Residuo secco a 105°C*	%	1,57	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	04-apr-18			
Solidi totali fissi - Residuo a 600°C*	%	1,11	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	05-apr-18			
Alluminio	mg/l	3,60±0,16	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Arsenico	mg/l	0,223±0,031	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Antimonio	mg/l	0,103±0,021	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Bario	mg/l	0,369±0,042	225000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Berillio	mg/l	<0,030	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Boro	mg/l	3,94±0,13	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cadmio	mg/l	<0,0060	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cobalto	mg/l	0,371±0,055	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cromo totale	mg/l	1,78±0,08	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cromo VI	mg/l	<1,00	1000	APAT CNR IRSA 3150C Man. 29 2003 - UV-VIS	04-apr-18			
Ferro	mg/l	19,9±0,6	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Magnesio	mg/l	90,9±2,1	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Fosforo totale (come P)	mg/l	13,4±0,3	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Manganese	mg/l	0,329±0,099	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Mercurio*	mg/l	<0,002	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Molibdeno	mg/l	0,115±0,005	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Nichel	mg/l	2,43±0,17	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			

RAPPORTO DI PROVA n. 18CP0843-005

Pag. 3/8

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi		
Piombo	mg/l	0,786±0,053	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Rame	mg/l	39,1±0,9	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Selenio	mg/l	<0,015	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Stagno	mg/l	1,13±0,23	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Tallio	mg/l	<0,030	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Tellurio*	mg/l	<0,030	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Vanadio	mg/l	0,127±0,008	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Zinco	mg/l	16,5±0,4	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18		
Cianuri totali (come CN)	mg/l	<0,10	1000	M.U. 2251:08 - UV-VIS	05-apr-18		
Fenolo	mg/l	<0,0010	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Metilfenoli (o-, m-, p-)	mg/l	<0,0010	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
2-clorofenolo	mg/l	<0,0010	225000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
2,4-diclorofenolo	mg/l	<0,0010	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
2,4,6-triclorofenolo	mg/l	<0,0010	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Pentaclorofenolo	mg/l	<0,0010	5000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Formaldeide*	mg/l	0,5	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18		
Acroleina*	mg/l	<0,4	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18		
Acetaldeide*	mg/l	<0,4	10000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18		
Benzene	mg/l	0,008±0,001	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18		
1,3-butadiene*	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18		

RAPPORTO DI PROVA n. 18CP0843-005

Pag. 4/8

	Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
Toluene	mg/l	<0,005	30000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Etilbenzene	mg/l	<0,005	100000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Stirene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Metil Tert Butil Etere (MTBE)*	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Carbonio tetracloruro	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Tricloroetilene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Tetracloroetilene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Triclorometano	mg/l	<0,001	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Esaclorobutadiene	mg/l	<0,001	100	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Diclorometano	mg/l	0,005±0,003	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Clorometano	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Cloruro di vinile	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
1,2-dicloroetano	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
1,1-dicloroetilene	mg/l	<0,0005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Solventi organici azotati	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Tribromometano	mg/l	<0,001	35000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
1,2-dibromoetano	mg/l	<0,0001	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Dibromoclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Bromodiclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Benzo(a)antracene	mg/l	0,0088±0,0061	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				

RAPPORTO DI PROVA n. 18CP0843-005

Pag. 5/8

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi		
Benzo(a)pirene	mg/l	<0,0010	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Benzo(b)fluorantene	mg/l	0,0107±0,0074	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Benzo(j)fluorantene*	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Benzo(k)fluorantene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Benzo(e)pirene	mg/l	0,0075	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Dibenzo(a,h)antracene	mg/l	<0,0010	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Crisene	mg/l	0,0047±0,0027	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Idrocarburi policiclici aromatici (altri)*	mg/l	0,0191	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Aldrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Dieldrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Endrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Isodrin	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Pesticidi fosforati	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Pesticidi totali (esclusi i fosforati)	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Idrocarburi Leggeri C<12*	μg/l	<1,500	25000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18		
Idrocarburi Pesanti C>12*	mg/l	<5,00	250000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Idrocarburi totali (somma)*	mg/l	<5,00	250000	MPI 130 rev 0 - Calcolo	11-apr-18		
Grassi e olii animali/vegetali	mg/l	0,50±0,09	-	APAT CNR IRSA 5160 B1 Man. 29 2003 + APAT CNR IRSA 5160 B2 Man. 29	04-apr-18		
PCB totali*	mg/l	<0,0010	50	2003 - FT-IR EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18		
Zolfo totale*	%	0,10	-	EPA 5050 1994 + EPA 9056A 2007 - IC	04-apr-18		

RAPPORTO DI PROVA n. 18CP0843-005

Pag. 6/8

		Ri	sultati		
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi
Solfiti (come SO3)	mg/l	<5,0	-	APAT CNR IRSA 4150B Man. 29 2003 - IC	05-apr-18
Solfuri	mg/l	<5,0	-	APHA Standard Methods for the Examination of Water and Wastewater ed 22nd 2012 4500-S - UV-VIS	05-apr-18
Solfati (come SO4)	mg/l	690±23	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18
Cloruri	mg/l	3124±232	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18
Fluoruri	mg/l	6,1±1,4	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18
Aldeidi totali*	mg/l	0,5	-	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18
Azoto ammoniacale (come NH4)	mg/l	3632±401	-	M.U. 2363:09 - UV-VIS	04-apr-18
Azoto nitrico (come N)	mg/l	1,63±0,07	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18
Azoto nitroso (come N)	mg/l	<1,50	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18
Azoto totale (come N)*	mg/l	2910	-	APAT CNR IRSA 4060 Man. 29 2003 - UV-VIS	05-apr-18
Tensioattivi totali*	mg/l	14,4	-	MPI 035 rev 0 - UV-VIS	05-apr-18
Tensioattivi anionici*	mg/l	7,50	-	APAT CNR IRSA 5170 Man. 29 2003 - UV-VIS	05-apr-18
Tensioattivi non ionici (TBPE)*	mg/l	6,93	-	MPI 035 rev 0 - UV-VIS	05-apr-18
Tensioattivi cationici*	mg/l	<2,00	-	MPI 035 rev 0 - UV-VIS	05-apr-18
Xileni	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18

RAPPORTO DI PROVA n. 18CP0843-005

Pag. 7/8

L'incertezza estesa (U) e/o l'Interv. Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

* = Parametri non accreditati da Accredia

Note - Non oggetto dell'accreditamento ACCREDIA:

Al fine dell'attribuzione delle caratteristiche di pericolo, in riferimento ai dettami del Reg. UE 1357/2014, si procede come sottoindicato:

per l'attribuzione della caratteristica HP3 si procede sperimentalmente, ove possibile, o sulla base delle informazioni fornite dal Produttore:

per l'attribuzione delle caratteristiche HP4, HP5, HP6, HP7, HP8, HP10, HP11 e HP13, ci si riferisce alle concentrazioni dei composti riscontrati nel rifiuto e li si confronta con gli eventuali valori soglia e limite del Reg. UE 1357/2014, sulla base dell'indicazione di pericolo e il codice di classe specifici della sostanza riportati nell'elenco delle sostanze pericolose della tabella 3.1 del Reg. UE 1272/2008 e smi, nell'ambito della valutazione sono prese in considerazione esclusivamente le sostanze armonizzate all'interno del Reg. UE 1272/2008 e smi.; per le caratteristiche di pericolo HP1, HP2, HP9, HP12, HP15, ci si basa sulle informazioni fornite dal produttore ed in base al ciclo produttivo ed alle sostanze utilizzate e dichiarate alla consegna del campione mediante compilazione del mod.13B. Nel caso di presenza nel rifiuto di idrocarburi di origine non nota, visti i dati di viscosità cinematica totale a 40°C di oli lubrificanti, diatermici ed idraulici comunemente utilizzati in ambito industriale, non si fa riferimento al codice di indicazione di pericolo H304 per l'attribuzione della caratteristica di pericolo HP5. Per l'attribuzione della classe di pericolo HP14 il Laboratorio utilizza i criteri definiti dalla Direttiva Europea 1967/548/CE. Per Idrocarburi leggeri e pesanti si intendono i composti alifatici e aromatici, determinabili con la tecnica analitica dichiarata esclusi quelli singolarmente individuati, costituiti esclusivamente da Carbonio e Idrogeno. Non sono pertanto quantificati, all'interno di tali specie, i composti idrocarburici sostituiti.

I limiti riportati, per i metalli analizzati sul campione tal quale, hanno valore puramente indicativo qualora non si conosca il ciclo produttivo da cui si origina il rifiuto e si riferiscono a uno dei composti più pericolosi che il metallo può formare. Sulla base delle informazioni disponibili, per l'attribuzione dell'eventuale pericolosità al rifiuto e la relativa classe di pericolo il valore limite di riferimento, riportato per i metalli e per gli idrocarburi, può essere differente da quello indicato o non espresso; qualora sul mod.13B il Produttore indichi la presenza nel rifiuto di metalli in forma massiva, ai metalli riscontrati in analisi non sono applicati i limiti di concentrazione di cui all'allegato III della Direttiva 2008/98/CE così come indicato al punto 2.3 della Dir. 2014/955/UE fatto salvo eventuali ulteriori valutazioni effettuate in sede di validazione dei dati.

I valori analitici riportati nel presente Rapporto di Prova sono riferiti al campione tal quale nelle condizioni di consegna al Laboratorio.

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Tutti i limiti di legge, ad esclusione di quelli riferiti ai parametri "Punto di infiammabilità (vaso chiuso)" e "pH", sono espressi in mg/Kg.

Giudizio:

Ai fini della classificazione i parametri sono stati selezionati sulla base degli inquinanti industriali di maggior uso e con il Committente sulla base della conoscenza del processo chimico, del ciclo produttivo coinvolto e delle sostanze utilizzate fornite dal Produttore mediante Mod.13B.

- In relazione al catalogo europeo dei rifiuti, come riportato nella Decisione 2014/955/UE, ed in riferimento al Regolamento UE 1357/2014, all'art. 6-quater L.13/2009, dal D.M. 4/08/2010 Tab.A2, viste inoltre le note emesse dal ISS con prot.n°036565 (1° e 2° integrazione); fermo restando la rappresentatività del campione, limitatamente ai parametri determinati, in base ai risultati ottenuti e dalla dichiarazione/informazioni ricevute dal Produttore o Detentore, al rifiuto è attribuibile il codice CER 19 07 03 "Percolato di discarica, diverso da quello di cui alla voce 19 07 02*" e pertanto il medesimo è classificabile come rifiuto

RAPPORTO DI PROVA n. 18CP0843-005

Pag. 8/8

speciale non pericoloso.

RAPPORTO DI PROVA n. 18CP0843-004

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 8 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: PERCOLATO

Id campione cliente: Lotto III - Secondo settore

Id campione interno: 18CP0843-004

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data di ricevimento campione: 23/03/18

Data emissione rapporto di prova: 18/04/18

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Colore	-	Non percettibile con dil 1:200	-	APAT CNR IRSA 2020A Man. 29 2003 - Visivo	04-apr-18			
Odore	-	Non molesto con dil 1:200	-	APAT CNR IRSA 2050 Man. 29 2003 - Olfattometrico	04-apr-18			
Stato fisico*	-	Liquido	-	MPI 131 rev 0 - Visivo	04-apr-18			
Punto di infiammabilità (vaso chiuso)*	°C	>100	60	UNI EN ISO 3679:2005 - Analizzatore P.I.	04-apr-18			
Carbonio organico totale (TOC)	mg/l	1381±582	-	UNI EN 1484:1999 - Analizzatore elementare	04-apr-18			
рН	pН	7,9±0,1	2-11,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	04-apr-18			
Conducibilità a 20°C	μS/cm	22800±491	-	APAT CNR IRSA 2030 Man. 29 2003 - Conduttimetrico	04-apr-18			
COD Domanda chimica di ossigeno (come O2)	mg/l O2	6340±1029	-	ISO 15705:2002 - UV-VIS	04-apr-18			
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	4086	-	UNI EN ISO 1899-1:2001 - Elettrochimico	09-apr-18			
Solidi sospesi totali	mg/l	169±36	-	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	06-apr-18			
Densità*	g/ml	1,04	-	MPI 129 rev 0 - Gravimetrico	04-apr-18			

RAPPORTO DI PROVA n. 18CP0843-004

Pag. 2/8

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Materiali grossolani	P/A	Assenti	-	D.Lgs. 319/1976 10/05/1976 G.U. 141 29/05/1976 Tabella A punto 5 + APAT CNR IRSA 2090 Man. 29 2003 - Visivo	04-apr-18			
Solidi totali - Residuo secco a 105°C*	%	1,50	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	04-apr-18			
Solidi totali fissi - Residuo a 600°C*	%	0,91	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	05-apr-18			
Alluminio	mg/l	4,01±0,18	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Arsenico	mg/l	0,182±0,025	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Antimonio	mg/l	<0,060	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Bario	mg/l	0,766±0,077	225000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Berillio	mg/l	<0,030	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Boro	mg/l	4,32±0,14	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cadmio	mg/l	<0,0060	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cobalto	mg/l	0,109±0,017	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cromo totale	mg/l	2,04±0,08	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cromo VI	mg/l	<1,00	1000	APAT CNR IRSA 3150C Man. 29 2003 - UV-VIS	05-apr-18			
Ferro	mg/l	19,1±0,5	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Magnesio	mg/l	76,4±1,7	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Fosforo totale (come P)	mg/l	20,3±0,5	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Manganese	mg/l	0,238±0,074	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Mercurio*	mg/l	<0,002	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Molibdeno	mg/l	0,031±0,001	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Nichel	mg/l	0,760±0,159	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			

RAPPORTO DI PROVA n. 18CP0843-004

Pag. 3/8

		Ri	sultati		
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi
Piombo	mg/l	0,452±0,033	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18
Rame	mg/l	19,4±0,4	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18
Selenio	mg/l	<0,015	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18
Stagno	mg/l	1,70±0,26	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18
Tallio	mg/l	<0,030	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18
Tellurio*	mg/l	<0,030	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18
Vanadio	mg/l	0,171±0,011	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18
Zinco	mg/l	12,0±0,3	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18
Cianuri totali (come CN)	mg/l	<0,10	1000	M.U. 2251:08 - UV-VIS	05-apr-18
Fenolo	mg/l	<0,0010	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Metilfenoli (o-, m-, p-)	mg/l	0,0335±0,0189	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
2-clorofenolo	mg/l	<0,0010	225000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
2,4-diclorofenolo	mg/l	<0,0010	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
2,4,6-triclorofenolo	mg/l	<0,0010	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Pentaclorofenolo	mg/l	<0,0010	5000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18
Formaldeide*	mg/l	0,5	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18
Acroleina*	mg/l	<0,4	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18
Acetaldeide*	mg/l	<0,4	10000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18
Benzene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18
1,3-butadiene*	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18

RAPPORTO DI PROVA n. 18CP0843-004

Pag. 4/8

	Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
Toluene	mg/l	0,007±0,003	30000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Etilbenzene	mg/l	<0,005	100000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Stirene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Metil Tert Butil Etere (MTBE)*	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Carbonio tetracloruro	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Tricloroetilene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Tetracloroetilene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Triclorometano	mg/l	<0,001	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Esaclorobutadiene	mg/l	<0,001	100	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Diclorometano	mg/l	0,007±0,002	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Clorometano	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Cloruro di vinile	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
1,2-dicloroetano	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
1,1-dicloroetilene	mg/l	<0,0005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Solventi organici azotati	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Tribromometano	mg/l	<0,001	35000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
1,2-dibromoetano	mg/l	<0,0001	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Dibromoclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Bromodiclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Benzo(a)antracene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				

RAPPORTO DI PROVA n. 18CP0843-004

Pag. 5/8

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Benzo(a)pirene	mg/l	<0,0010	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Benzo(b)fluorantene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Benzo(j)fluorantene*	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Benzo(k)fluorantene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Benzo(e)pirene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Dibenzo(a,h)antracene	mg/l	<0,0010	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Crisene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Idrocarburi policiclici aromatici (altri)*	mg/l	0,0070	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Aldrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Dieldrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Endrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Isodrin	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Pesticidi fosforati	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Pesticidi totali (esclusi i fosforati)	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Idrocarburi Leggeri C<12*	μg/l	<1,500	25000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Idrocarburi Pesanti C>12*	mg/l	<5,00	250000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Idrocarburi totali (somma)*	mg/l	<5,00	250000	MPI 130 rev 0 - Calcolo	11-apr-18			
Grassi e olii animali/vegetali	mg/l	1,48±0,13	-	APAT CNR IRSA 5160 B1 Man. 29 2003 + APAT CNR IRSA 5160 B2 Man. 29 2003 - FT-IR	04-apr-18			
PCB totali*	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Zolfo totale*	%	0,06	-	EPA 5050 1994 + EPA 9056A 2007 - IC	05-apr-18			

RAPPORTO DI PROVA n. 18CP0843-004

Pag. 6/8

Risultati							
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi		
Solfiti (come SO3)	mg/l	<5,0	-	APAT CNR IRSA 4150B Man. 29 2003 - IC	05-apr-18		
Solfuri	mg/l	<5,0	-	APHA Standard Methods for the Examination of Water and Wastewater ed 22nd 2012 4500-S - UV-VIS	05-apr-18		
Solfati (come SO4)	mg/l	62,5±10,6	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18		
Cloruri	mg/l	2888±215	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18		
Fluoruri	mg/l	5,9±1,4	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18		
Aldeidi totali*	mg/l	0,5	-	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18		
Azoto ammoniacale (come NH4)	mg/l	4469±493	-	M.U. 2363:09 - UV-VIS	04-apr-18		
Azoto nitrico (come N)	mg/l	<1,13	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18		
Azoto nitroso (come N)	mg/l	<1,50	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18		
Azoto totale (come N)*	mg/l	3980	-	APAT CNR IRSA 4060 Man. 29 2003 - UV-VIS	05-apr-18		
Tensioattivi totali*	mg/l	9,26	-	MPI 035 rev 0 - UV-VIS	05-apr-18		
Tensioattivi anionici*	mg/l	8,46	-	APAT CNR IRSA 5170 Man. 29 2003 - UV-VIS	05-apr-18		
Tensioattivi non ionici (TBPE)*	mg/l	0,80	-	MPI 035 rev 0 - UV-VIS	05-apr-18		
Tensioattivi cationici*	mg/l	<0,20	-	MPI 035 rev 0 - UV-VIS	05-apr-18		
Xileni	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18		

RAPPORTO DI PROVA n. 18CP0843-004

Pag. 7/8

L'incertezza estesa (U) e/o l'Interv.Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

* = Parametri non accreditati da Accredia

Note - Non oggetto dell'accreditamento ACCREDIA:

Al fine dell'attribuzione delle caratteristiche di pericolo, in riferimento ai dettami del Reg. UE 1357/2014, si procede come sottoindicato:

per l'attribuzione della caratteristica HP3 si procede sperimentalmente, ove possibile, o sulla base delle informazioni fornite dal Produttore:

per l'attribuzione delle caratteristiche HP4, HP5, HP6, HP7, HP8, HP10, HP11 e HP13, ci si riferisce alle concentrazioni dei composti riscontrati nel rifiuto e li si confronta con gli eventuali valori soglia e limite del Reg. UE 1357/2014, sulla base dell'indicazione di pericolo e il codice di classe specifici della sostanza riportati nell'elenco delle sostanze pericolose della tabella 3.1 del Reg. UE 1272/2008 e smi, nell'ambito della valutazione sono prese in considerazione esclusivamente le sostanze armonizzate all'interno del Reg. UE 1272/2008 e smi.; per le caratteristiche di pericolo HP1, HP2, HP9, HP12, HP15, ci si basa sulle informazioni fornite dal produttore ed in base al ciclo produttivo ed alle sostanze utilizzate e dichiarate alla consegna del campione mediante compilazione del mod.13B. Nel caso di presenza nel rifiuto di idrocarburi di origine non nota, visti i dati di viscosità cinematica totale a 40°C di oli lubrificanti, diatermici ed idraulici comunemente utilizzati in ambito industriale, non si fa riferimento al codice di indicazione di pericolo H304 per l'attribuzione della caratteristica di pericolo HP5. Per l'attribuzione della classe di pericolo HP14 il Laboratorio utilizza i criteri definiti dalla Direttiva Europea 1967/548/CE. Per Idrocarburi leggeri e pesanti si intendono i composti alifatici e aromatici, determinabili con la tecnica analitica dichiarata esclusi quelli singolarmente individuati, costituiti esclusivamente da Carbonio e Idrogeno. Non sono pertanto quantificati, all'interno di tali specie, i composti idrocarburici sostituiti.

I limiti riportati, per i metalli analizzati sul campione tal quale, hanno valore puramente indicativo qualora non si conosca il ciclo produttivo da cui si origina il rifiuto e si riferiscono a uno dei composti più pericolosi che il metallo può formare. Sulla base delle informazioni disponibili, per l'attribuzione dell'eventuale pericolosità al rifiuto e la relativa classe di pericolo il valore limite di riferimento, riportato per i metalli e per gli idrocarburi, può essere differente da quello indicato o non espresso; qualora sul mod.13B il Produttore indichi la presenza nel rifiuto di metalli in forma massiva, ai metalli riscontrati in analisi non sono applicati i limiti di concentrazione di cui all'allegato III della Direttiva 2008/98/CE così come indicato al punto 2.3 della Dir. 2014/955/UE fatto salvo eventuali ulteriori valutazioni effettuate in sede di validazione dei dati.

I valori analitici riportati nel presente Rapporto di Prova sono riferiti al campione tal quale nelle condizioni di consegna al Laboratorio.

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Tutti i limiti di legge, ad esclusione di quelli riferiti ai parametri "Punto di infiammabilità (vaso chiuso)" e "pH", sono espressi in mg/Kg.

Giudizio:

Ai fini della classificazione i parametri sono stati selezionati sulla base degli inquinanti industriali di maggior uso e con il Committente sulla base della conoscenza del processo chimico, del ciclo produttivo coinvolto e delle sostanze utilizzate fornite dal Produttore mediante Mod.13B.

- In relazione al catalogo europeo dei rifiuti, come riportato nella Decisione 2014/955/UE, ed in riferimento al Regolamento UE 1357/2014, all'art. 6-quater L.13/2009, dal D.M. 4/08/2010 Tab.A2, viste inoltre le note emesse dal ISS con prot.n°036565 (1° e 2° integrazione); fermo restando la rappresentatività del campione, limitatamente ai parametri determinati, in base ai risultati ottenuti e dalla dichiarazione/informazioni ricevute dal Produttore o Detentore, al rifiuto è attribuibile il codice CER 19 07 03 "Percolato di discarica, diverso da quello di cui alla voce 19 07 02*" e pertanto il medesimo è classificabile come rifiuto

RAPPORTO DI PROVA n. 18CP0843-004

Pag. 8/8

speciale non pericoloso.

RAPPORTO DI PROVA n. 18CP0843-003

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 8 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: PERCOLATO

Id campione cliente: Lotto III -Primo settore

Id campione interno: 18CP0843-003

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data di ricevimento campione: 23/03/18

Data emissione rapporto di prova: 18/04/18

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Colore	-	Non percettibile con dil 1:200	-	APAT CNR IRSA 2020A Man. 29 2003 - Visivo	04-apr-18			
Odore	-	Non molesto con dil 1:200	-	APAT CNR IRSA 2050 Man. 29 2003 - Olfattometrico	04-apr-18			
Stato fisico*	-	Liquido	-	MPI 131 rev 0 - Visivo	04-apr-18			
Punto di infiammabilità (vaso chiuso)*	°C	>100	60	UNI EN ISO 3679:2005 - Analizzatore P.I.	04-apr-18			
Carbonio organico totale (TOC)	mg/l	1029±442	-	UNI EN 1484:1999 - Analizzatore elementare	04-apr-18			
рН	рН	7,9±0,1	2-11,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	04-apr-18			
Conducibilità a 20°C	μS/cm	16410±354	-	APAT CNR IRSA 2030 Man. 29 2003 - Conduttimetrico	04-apr-18			
COD Domanda chimica di ossigeno (come O2)	mg/l O2	4380±761	-	ISO 15705:2002 - UV-VIS	04-apr-18			
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	2740	-	UNI EN ISO 1899-1:2001 - Elettrochimico	09-apr-18			
Solidi sospesi totali	mg/l	144±31	-	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	06-apr-18			
Densità*	g/ml	1,04	-	MPI 129 rev 0 - Gravimetrico	04-apr-18			

RAPPORTO DI PROVA n. 18CP0843-003

Pag. 2/8

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Materiali grossolani	P/A	Assenti	-	D.Lgs. 319/1976 10/05/1976 G.U. 141 29/05/1976 Tabella A punto 5 + APAT CNR IRSA 2090 Man. 29 2003 - Visivo	04-apr-18			
Solidi totali - Residuo secco a 105°C*	%	1,15	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	04-apr-18			
Solidi totali fissi - Residuo a 600°C*	%	0,80	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	05-apr-18			
Alluminio	mg/l	2,09±0,09	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Arsenico	mg/l	0,077±0,011	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Antimonio	mg/l	<0,030	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Bario	mg/l	0,606±0,053	225000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Berillio	mg/l	<0,015	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Boro	mg/l	7,27±0,25	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cadmio	mg/l	<0,0030	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cobalto	mg/l	0,093±0,015	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cromo totale	mg/l	1,10±0,04	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cromo VI	mg/l	<1,00	1000	APAT CNR IRSA 3150C Man. 29 2003 - UV-VIS	05-apr-18			
Ferro	mg/l	12,4±0,4	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Magnesio	mg/l	76,4±1,7	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Fosforo totale (come P)	mg/l	16,8±0,4	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Manganese	mg/l	0,126±0,039	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Mercurio*	mg/l	<0,001	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Molibdeno	mg/l	0,046±0,002	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Nichel	mg/l	0,744±0,111	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			

RAPPORTO DI PROVA n. 18CP0843-003

Pag. 3/8

Risultati								
Caratteristica chimico-fisica	UM Valore Riscontra ± U		Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Piombo	mg/l	0,193±0,014	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Rame	mg/l	2,85±0,06	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Selenio	mg/l	<0,008	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Stagno	mg/l	1,31±0,08	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Tallio	mg/l	<0,015	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Tellurio*	mg/l	<0,015	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Vanadio	mg/l	0,083±0,005	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Zinco	mg/l	2,19±0,05	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cianuri totali (come CN)	mg/l	<0,10	1000	M.U. 2251:08 - UV-VIS	05-apr-18			
Fenolo	mg/l	<0,0010	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Metilfenoli (o-, m-, p-)	mg/l	<0,0010	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
2-clorofenolo	mg/l	<0,0010	225000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
2,4-diclorofenolo	mg/l	<0,0010	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
2,4,6-triclorofenolo	mg/l	<0,0010	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Pentaclorofenolo	mg/l	<0,0010	5000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Formaldeide*	mg/l	0,5	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18			
Acroleina*	mg/l	<0,4	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18			
Acetaldeide*	mg/l	<0,4	10000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18			
Benzene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18			
1,3-butadiene*	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18			

RAPPORTO DI PROVA n. 18CP0843-003

Pag. 4/8

Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
Toluene	mg/l	0,005±0,001	30000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Etilbenzene	mg/l	<0,005	100000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Stirene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Metil Tert Butil Etere (MTBE)*	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Carbonio tetracloruro	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Tricloroetilene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Tetracloroetilene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Triclorometano	mg/l	<0,001	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Esaclorobutadiene	mg/l	<0,001	100	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Diclorometano	mg/l	0,005±0,003	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Clorometano	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Cloruro di vinile	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
1,2-dicloroetano	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
1,1-dicloroetilene	mg/l	<0,0005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Solventi organici azotati	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Tribromometano	mg/l	<0,001	35000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
1,2-dibromoetano	mg/l	<0,0001	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Dibromoclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Bromodiclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Benzo(a)antracene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				

RAPPORTO DI PROVA n. 18CP0843-003

Pag. 5/8

Risultati									
Caratteristica chimico-fisica	UM Valore Riscontrato ± U		Valore Limite	Metodo di prova	Data Esecuzione Analisi				
Benzo(a)pirene	mg/l	<0,0010	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Benzo(b)fluorantene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Benzo(j)fluorantene*	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Benzo(k)fluorantene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Benzo(e)pirene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Dibenzo(a,h)antracene	mg/l	<0,0010	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Crisene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Idrocarburi policiclici aromatici (altri)*	mg/l	0,0070	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Aldrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Dieldrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Endrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Isodrin	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Pesticidi fosforati	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Pesticidi totali (esclusi i fosforati)	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Idrocarburi Leggeri C<12*	μg/l	<1,500	25000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				
Idrocarburi Pesanti C>12*	mg/l	<5,00	250000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Idrocarburi totali (somma)*	mg/l	<5,00	250000	MPI 130 rev 0 - Calcolo	11-apr-18				
Grassi e olii animali/vegetali	mg/l	0,75±0,11	-	APAT CNR IRSA 5160 B1 Man. 29 2003 + APAT CNR IRSA 5160 B2 Man. 29 2003 - FT-IR	04-apr-18				
PCB totali*	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Zolfo totale*	%	0,06	-	EPA 5050 1994 + EPA 9056A 2007 - IC	05-apr-18				

RAPPORTO DI PROVA n. 18CP0843-003

Pag. 6/8

	Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
Solfiti (come SO3)	mg/l	<5,0	-	APAT CNR IRSA 4150B Man. 29 2003 - IC	05-apr-18				
Solfuri	mg/l	<5,0	-	APHA Standard Methods for the Examination of Water and Wastewater ed 22nd 2012 4500-S - UV-VIS	05-apr-18				
Solfati (come SO4)	mg/l	123±16	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18				
Cloruri	mg/l	2483±185	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18				
Fluoruri	mg/l	5,8±1,4	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18				
Aldeidi totali*	mg/l	0,5	-	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18				
Azoto ammoniacale (come NH4)	mg/l	3220±355	-	M.U. 2363:09 - UV-VIS	04-apr-18				
Azoto nitrico (come N)	mg/l	<1,13	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18				
Azoto nitroso (come N)	mg/l	<1,50	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18				
Azoto totale (come N)*	mg/l	2580	-	APAT CNR IRSA 4060 Man. 29 2003 - UV-VIS	05-apr-18				
Tensioattivi totali*	mg/l	17,9	-	MPI 035 rev 0 - UV-VIS	05-apr-18				
Tensioattivi anionici*	mg/l	8,54	-	APAT CNR IRSA 5170 Man. 29 2003 - UV-VIS	05-apr-18				
Tensioattivi non ionici (TBPE)*	mg/l	9,32	-	MPI 035 rev 0 - UV-VIS	05-apr-18				
Tensioattivi cationici*	mg/l	<2,00	- MPI 035 rev 0 - UV-VIS		05-apr-18				
Xileni	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	11-apr-18				

RAPPORTO DI PROVA n. 18CP0843-003

Pag. 7/8

L'incertezza estesa (U) e/o l'Interv. Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

* = Parametri non accreditati da Accredia

Note - Non oggetto dell'accreditamento ACCREDIA:

Al fine dell'attribuzione delle caratteristiche di pericolo, in riferimento ai dettami del Reg. UE 1357/2014, si procede come sottoindicato:

per l'attribuzione della caratteristica HP3 si procede sperimentalmente, ove possibile, o sulla base delle informazioni fornite dal Produttore;

per l'attribuzione delle caratteristiche HP4, HP5, HP6, HP7, HP8, HP10, HP11 e HP13, ci si riferisce alle concentrazioni dei composti riscontrati nel rifiuto e li si confronta con gli eventuali valori soglia e limite del Reg. UE 1357/2014, sulla base dell'indicazione di pericolo e il codice di classe specifici della sostanza riportati nell'elenco delle sostanze pericolose della tabella 3.1 del Reg. UE 1272/2008 e smi, nell'ambito della valutazione sono prese in considerazione esclusivamente le sostanze armonizzate all'interno del Reg. UE 1272/2008 e smi.; per le caratteristiche di pericolo HP1, HP2, HP9, HP12, HP15, ci si basa sulle informazioni fornite dal produttore ed in base al ciclo produttivo ed alle sostanze utilizzate e dichiarate alla consegna del campione mediante compilazione del mod.13B. Nel caso di presenza nel rifiuto di idrocarburi di origine non nota, visti i dati di viscosità cinematica totale a 40°C di oli lubrificanti, diatermici ed idraulici comunemente utilizzati in ambito industriale, non si fa riferimento al codice di indicazione di pericolo H304 per l'attribuzione della caratteristica di pericolo HP5. Per l'attribuzione della classe di pericolo HP14 il Laboratorio utilizza i criteri definiti dalla Direttiva Europea 1967/548/CE. Per Idrocarburi leggeri e pesanti si intendono i composti alifatici e aromatici, determinabili con la tecnica analitica dichiarata esclusi quelli singolarmente individuati, costituiti esclusivamente da Carbonio e Idrogeno. Non sono pertanto quantificati, all'interno di tali specie, i composti idrocarburici sostituiti.

I limiti riportati, per i metalli analizzati sul campione tal quale, hanno valore puramente indicativo qualora non si conosca il ciclo produttivo da cui si origina il rifiuto e si riferiscono a uno dei composti più pericolosi che il metallo può formare. Sulla base delle informazioni disponibili, per l'attribuzione dell'eventuale pericolosità al rifiuto e la relativa classe di pericolo il valore limite di riferimento, riportato per i metalli e per gli idrocarburi, può essere differente da quello indicato o non espresso; qualora sul mod.13B il Produttore indichi la presenza nel rifiuto di metalli in forma massiva, ai metalli riscontrati in analisi non sono applicati i limiti di concentrazione di cui all'allegato III della Direttiva 2008/98/CE così come indicato al punto 2.3 della Dir. 2014/955/UE fatto salvo eventuali ulteriori valutazioni effettuate in sede di validazione dei dati.

I valori analitici riportati nel presente Rapporto di Prova sono riferiti al campione tal quale nelle condizioni di consegna al Laboratorio.

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Tutti i limiti di legge, ad esclusione di quelli riferiti ai parametri "Punto di infiammabilità (vaso chiuso)" e "pH", sono espressi in mg/Kg.

Giudizio:

Ai fini della classificazione i parametri sono stati selezionati sulla base degli inquinanti industriali di maggior uso e con il Committente sulla base della conoscenza del processo chimico, del ciclo produttivo coinvolto e delle sostanze utilizzate fornite dal Produttore mediante Mod.13B.

- In relazione al catalogo europeo dei rifiuti, come riportato nella Decisione 2014/955/UE, ed in riferimento al Regolamento UE 1357/2014, all'art. 6-quater L.13/2009, dal D.M. 4/08/2010 Tab.A2, viste inoltre le note emesse dal ISS con prot.n°036565 (1° e 2° integrazione); fermo restando la rappresentatività del campione, limitatamente ai parametri determinati, in base ai risultati ottenuti e dalla dichiarazione/informazioni ricevute dal Produttore o Detentore, al rifiuto è attribuibile il codice CER 19 07 03 "Percolato di discarica, diverso da quello di cui alla voce 19 07 02*" e pertanto il medesimo è classificabile come rifiuto

RAPPORTO DI PROVA n. 18CP0843-003

Pag. 8/8

speciale non pericoloso.

RAPPORTO DI PROVA n. 18CP0843-002

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 8 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: PERCOLATO

Id campione cliente: Lotto II

Id campione interno: 18CP0843-002

Procedura di campionamento: Campionamento effettuato dal Cliente/Committente

Data di ricevimento campione: 23/03/18

Data emissione rapporto di prova: 18/04/18

Risultati									
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
Colore	-	Non percettibile con dil 1:200	-	APAT CNR IRSA 2020A Man. 29 2003 - Visivo	04-apr-18				
Odore	-	Non molesto con dil 1:200	-	APAT CNR IRSA 2050 Man. 29 2003 - Olfattometrico	04-apr-18				
Stato fisico*	-	Liquido	-	MPI 131 rev 0 - Visivo	04-apr-18				
Punto di infiammabilità (vaso chiuso)*	°C	>100	60	UNI EN ISO 3679:2005 - Analizzatore P.I.	04-apr-18				
Carbonio organico totale (TOC)	mg/l	836±363	-	UNI EN 1484:1999 - Analizzatore elementare	04-apr-18				
рН	pН	7,9±0,1	2-11,5	APAT CNR IRSA 2060 Man. 29 2003 - Potenziometrico	04-apr-18				
Conducibilità a 20°C	μS/cm	13580±293	-	APAT CNR IRSA 2030 Man. 29 2003 - Conduttimetrico	04-apr-18				
COD Domanda chimica di ossigeno (come O2)	mg/l O2	2730±502	-	ISO 15705:2002 - UV-VIS	04-apr-18				
BOD5 Domanda biochimica di ossigeno (come O2)*	mg/l O2	1790	-	UNI EN ISO 1899-1:2001 - Elettrochimico	04-apr-18				
Solidi sospesi totali	mg/l	69,2±14,8	-	APAT CNR IRSA 2090B Man. 29 2003 - Gravimetrico	06-apr-18				
Densità*	g/ml	1,00	-	MPI 129 rev 0 - Gravimetrico	04-apr-18				

RAPPORTO DI PROVA n. 18CP0843-002

Pag. 2/8

	Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi				
Materiali grossolani	P/A	Assenti	-	D.Lgs. 319/1976 10/05/1976 G.U. 141 29/05/1976 Tabella A punto 5 + APAT CNR IRSA 2090 Man. 29 2003 - Visivo	04-apr-18				
Solidi totali - Residuo secco a 105°C*	%	0,34	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	04-apr-18				
Solidi totali fissi - Residuo a 600°C*	%	0,11	-	CNR IRSA 2 Q64 Vol 2 1984 - Gravimetrico	05-apr-18				
Alluminio	mg/l	0,667±0,106	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Arsenico	mg/l	0,064±0,009	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Antimonio	mg/l	<0,030	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Bario	mg/l	0,372±0,038	225000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Berillio	mg/l	<0,015	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Boro	mg/l	3,15±0,11	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Cadmio	mg/l	<0,0030	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Cobalto	mg/l	0,071±0,011	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Cromo totale	mg/l	0,582±0,034	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Cromo VI	mg/l	<1,00	1000	APAT CNR IRSA 3150C Man. 29 2003 - UV-VIS	04-apr-18				
Ferro	mg/l	6,24±0,17	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Magnesio	mg/l	62,5±1,4	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Fosforo totale (come P)	mg/l	13,8±0,4	-	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Manganese	mg/l	0,462±0,111	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				
Mercurio*	mg/l	<0,001	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 -	05-apr-18				
Molibdeno	mg/l	<0,015	10000	ICP-OES APAT CNR IRSA 3010 Man. 29 2003 + 0000 APAT CNR IRSA 3020 Man. 29 2003 - 1000 ICP-OES					
Nichel	mg/l	0,511±0,096	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18				

RAPPORTO DI PROVA n. 18CP0843-002

Pag. 3/8

Risultati								
Caratteristica chimico-fisica	UM Valore Riscontrate ± U		rato Valore Metodo di Limite prova		Data Esecuzione Analisi			
Piombo	mg/l	0,342±0,024	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Rame	mg/l	6,19±0,14	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Selenio	mg/l	<0,008	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Stagno	mg/l	0,585±0,118	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Tallio	mg/l	<0,015	2500	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Tellurio*	mg/l	<0,015	1000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Vanadio	mg/l	0,065±0,004	10000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Zinco	mg/l	8,62±0,21	25000	APAT CNR IRSA 3010 Man. 29 2003 + APAT CNR IRSA 3020 Man. 29 2003 - ICP-OES	05-apr-18			
Cianuri totali (come CN)	mg/l	<0,10	1000	M.U. 2251:08 - UV-VIS	05-apr-18			
Fenolo	mg/l	<0,0010	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Metilfenoli (o-, m-, p-)	mg/l	<0,0010	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
2-clorofenolo	mg/l	<0,0010	225000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
2,4-diclorofenolo	mg/l	<0,0010	50000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
2,4,6-triclorofenolo	mg/l	<0,0010	10000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Pentaclorofenolo	mg/l	<0,0010	5000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Formaldeide*	mg/l	0,4	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18			
Acroleina*	mg/l	<0,4	1000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18			
Acetaldeide*	mg/l	<0,4	10000	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18			
Benzene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
1,3-butadiene*	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			

RAPPORTO DI PROVA n. 18CP0843-002

Pag. 4/8

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Toluene	mg/l	0,009±0,003	30000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Etilbenzene	mg/l	<0,005	100000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Stirene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Metil Tert Butil Etere (MTBE)*	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Carbonio tetracloruro	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Tricloroetilene	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Tetracloroetilene	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Triclorometano	mg/l	<0,001	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Esaclorobutadiene	mg/l	<0,001	100	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Diclorometano	mg/l	0,008±0,002	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Clorometano	mg/l	<0,005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Cloruro di vinile	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
1,2-dicloroetano	mg/l	<0,005	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
1,1-dicloroetilene	mg/l	<0,0005	10000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Solventi organici azotati	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			
Tribromometano	mg/l	<0,001	35000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
1,2-dibromoetano	mg/l	<0,0001	1000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Dibromoclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Bromodiclorometano	mg/l	<0,001	-	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			
Benzo(a)antracene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18			

RAPPORTO DI PROVA n. 18CP0843-002

Pag. 5/8

Risultati									
Caratteristica chimico-fisica	UM Valore Riscontrato ± U		Valore Limite	Metodo di prova	Data Esecuzione Analisi				
Benzo(a)pirene	mg/l	<0,0010	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Benzo(b)fluorantene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Benzo(j)fluorantene*	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Benzo(k)fluorantene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Benzo(e)pirene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Dibenzo(a,h)antracene	mg/l	<0,0010	100	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Crisene	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Idrocarburi policiclici aromatici (altri)*	mg/l	0,0065	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Aldrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Dieldrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Endrin	mg/l	<0,0010	50	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Isodrin	mg/l	<0,0010	1000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Pesticidi fosforati	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Pesticidi totali (esclusi i fosforati)	mg/l	<0,0010	-	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Idrocarburi Leggeri C<12*	μg/l	<1,500	25000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18				
Idrocarburi Pesanti C>12*	mg/l	<5,00	250000	EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Idrocarburi totali (somma)*	mg/l	<5,00	250000	MPI 130 rev 0 - Calcolo	11-apr-18				
Grassi e olii animali/vegetali	mg/l	1,10±0,11	-	APAT CNR IRSA 5160 B1 Man. 29 2003 + APAT CNR IRSA 5160 B2 Man. 29	04-apr-18				
PCB totali*	mg/l	<0,0010	50	2003 - FT-IR EPA 3510C 1996 + EPA 8270E 2017 - GC- MS	11-apr-18				
Zolfo totale*	%	0,05	-	EPA 5050 1994 + EPA 9056A 2007 - IC	05-apr-18				

RAPPORTO DI PROVA n. 18CP0843-002

Pag. 6/8

Risultati								
Caratteristica chimico-fisica	UM	Valore Riscontrato ± U	Valore Limite	Metodo di prova	Data Esecuzione Analisi			
Solfiti (come SO3)	mg/l	<5,0	-	APAT CNR IRSA 4150B Man. 29 2003 - IC	05-apr-18			
Solfuri	mg/l	<5,0	-	APHA Standard Methods for the Examination of Water and Wastewater ed 22nd 2012 4500-S - UV-VIS	05-apr-18			
Solfati (come SO4)	mg/l	15,3±2,7	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Cloruri	mg/l	2043±152	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Fluoruri	mg/l	5,6±1,3	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Aldeidi totali*	mg/l	0,4	-	APAT CNR IRSA 5010 B1 Man. 29 2003 - HPLC- UV	06-apr-18			
Azoto ammoniacale (come NH4)	mg/l	2814±311	-	M.U. 2363:09 - UV-VIS	04-apr-18			
Azoto nitrico (come N)	mg/l	<1,13	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Azoto nitroso (come N)	mg/l	<1,50	-	APAT CNR IRSA 4020 Man. 29 2003 - IC	04-apr-18			
Azoto totale (come N)*	mg/l	2210	-	APAT CNR IRSA 4060 Man. 29 2003 - UV-VIS	05-apr-18			
Tensioattivi totali*	mg/l	14,9	-	MPI 035 rev 0 - UV-VIS	05-apr-18			
Tensioattivi anionici*	mg/l	8,72	-	APAT CNR IRSA 5170 Man. 29 2003 - UV-VIS	05-apr-18			
Tensioattivi non ionici (TBPE)*	mg/l	6,21	-	MPI 035 rev 0 - UV-VIS	05-apr-18			
Tensioattivi cationici*	mg/l	<2,00	-	MPI 035 rev 0 - UV-VIS	05-apr-18			
Xileni	mg/l	<0,005	200000	EPA 5030C 2003 + EPA 8260D 2017 - GC- MS	04-apr-18			

RAPPORTO DI PROVA n. 18CP0843-002

Pag. 7/8

L'incertezza estesa (U) e/o l'Interv. Fiduciale sono calcolati con fattore di copertura K=2, per un livello di probabilità del 95% ed un numero di gradi di libertà maggiore o uguale a 10. I dati analitici non sono corretti dal Laboratorio per il fattore di recupero.

* = Parametri non accreditati da Accredia

Note - Non oggetto dell'accreditamento ACCREDIA:

Al fine dell'attribuzione delle caratteristiche di pericolo, in riferimento ai dettami del Reg. UE 1357/2014, si procede come sottoindicato:

per l'attribuzione della caratteristica HP3 si procede sperimentalmente, ove possibile, o sulla base delle informazioni fornite dal Produttore:

per l'attribuzione delle caratteristiche HP4, HP5, HP6, HP7, HP8, HP10, HP11 e HP13, ci si riferisce alle concentrazioni dei composti riscontrati nel rifiuto e li si confronta con gli eventuali valori soglia e limite del Reg. UE 1357/2014, sulla base dell'indicazione di pericolo e il codice di classe specifici della sostanza riportati nell'elenco delle sostanze pericolose della tabella 3.1 del Reg. UE 1272/2008 e smi, nell'ambito della valutazione sono prese in considerazione esclusivamente le sostanze armonizzate all'interno del Reg. UE 1272/2008 e smi.; per le caratteristiche di pericolo HP1, HP2, HP9, HP12, HP15, ci si basa sulle informazioni fornite dal produttore ed in base al ciclo produttivo ed alle sostanze utilizzate e dichiarate alla consegna del campione mediante compilazione del mod.13B. Nel caso di presenza nel rifiuto di idrocarburi di origine non nota, visti i dati di viscosità cinematica totale a 40°C di oli lubrificanti, diatermici ed idraulici comunemente utilizzati in ambito industriale, non si fa riferimento al codice di indicazione di pericolo H304 per l'attribuzione della caratteristica di pericolo HP5. Per l'attribuzione della classe di pericolo HP14 il Laboratorio utilizza i criteri definiti dalla Direttiva Europea 1967/548/CE. Per Idrocarburi leggeri e pesanti si intendono i composti alifatici e aromatici, determinabili con la tecnica analitica dichiarata esclusi quelli singolarmente individuati, costituiti esclusivamente da Carbonio e Idrogeno. Non sono pertanto quantificati, all'interno di tali specie, i composti idrocarburici sostituiti.

I limiti riportati, per i metalli analizzati sul campione tal quale, hanno valore puramente indicativo qualora non si conosca il ciclo produttivo da cui si origina il rifiuto e si riferiscono a uno dei composti più pericolosi che il metallo può formare. Sulla base delle informazioni disponibili, per l'attribuzione dell'eventuale pericolosità al rifiuto e la relativa classe di pericolo il valore limite di riferimento, riportato per i metalli e per gli idrocarburi, può essere differente da quello indicato o non espresso; qualora sul mod.13B il Produttore indichi la presenza nel rifiuto di metalli in forma massiva, ai metalli riscontrati in analisi non sono applicati i limiti di concentrazione di cui all'allegato III della Direttiva 2008/98/CE così come indicato al punto 2.3 della Dir. 2014/955/UE fatto salvo eventuali ulteriori valutazioni effettuate in sede di validazione dei dati.

I valori analitici riportati nel presente Rapporto di Prova sono riferiti al campione tal quale nelle condizioni di consegna al Laboratorio.

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Tutti i limiti di legge, ad esclusione di quelli riferiti ai parametri "Punto di infiammabilità (vaso chiuso)" e "pH", sono espressi in mg/Kg.

Giudizio:

Ai fini della classificazione i parametri sono stati selezionati sulla base degli inquinanti industriali di maggior uso e con il Committente sulla base della conoscenza del processo chimico, del ciclo produttivo coinvolto e delle sostanze utilizzate fornite dal Produttore mediante Mod.13B.

- In relazione al catalogo europeo dei rifiuti, come riportato nella Decisione 2014/955/UE, ed in riferimento al Regolamento UE 1357/2014, all'art. 6-quater L.13/2009, dal D.M. 4/08/2010 Tab.A2, viste inoltre le note emesse dal ISS con prot.n°036565 (1° e 2° integrazione); fermo restando la rappresentatività del campione, limitatamente ai parametri determinati, in base ai risultati ottenuti e dalla dichiarazione/informazioni ricevute dal Produttore o Detentore, al rifiuto è attribuibile il codice CER 19 07 03 "Percolato di discarica, diverso da quello di cui alla voce 19 07 02*" e pertanto il medesimo è classificabile come rifiuto

RAPPORTO DI PROVA n. 18CP0843-002

Pag. 8/8

speciale non pericoloso.

	1° sett.		2° sett.		3° sett.	
Battente in cm	LIV.max	Liv.Min	LIV.max	Liv.Min	LIV.max	Liv.Min
01/01/2018	-	-	-	-	-	-
02/01/2018	61	0	9	0	0	0
03/01/2018	50	0	8	0	0	0
04/01/2018	74	0	7	0	0	0
05/01/2018	50	0	8	0	0	0
06/01/2018	-	-	-	-	-	-
07/01/2018	-	-	-	-	-	-
08/01/2018	72	0	9	0	1	0
09/01/2018	78	0	9	0	1	0
10/01/2018	74	0	9	0	1	0
11/01/2018	77	0	9	0	1	0
12/01/2018	79	0	9	0	2	0
13/01/2018	75	0	9	0	2	0
14/01/2018	-	-	-	-	-	-
15/01/2018	71	0	9	0	0	0
16/01/2018	79	0	9	0	0	0
17/01/2018	78	0	9	0	0	0
18/01/2018	77	0	9	0	0	0
19/01/2018	80	0	9	0	0	0
20/01/2018	75	0	9	0	0	0
21/01/2018	-	-	-	-	-	-
22/01/2018	72	0	9	0	0	0
23/01/2018	70	0	9	0	0	0
24/01/2018	79	0	9	0	1	0
25/01/2018	75	0	9	0	1	0
26/01/2018	78	0	7	0	1	0
27/01/2018	75	0	7	0	1	0
28/01/2018	-	-	-	-	-	-
29/01/2018	67	0	7	0	1	0
30/01/2018	72	0	7	0	1	0
31/01/2018	76	0	7	0	1	0

	1° sett.		2° sett.		3° sett.	
Battente in cm	LIV.max	Liv.Min	LIV.max	Liv.Min	LIV.max	Liv.Min
01/02/2018	70	0	8	0	2	0
02/02/2018	79	0	8	0	0	0
03/02/2018	64	0	8	0	0	0
04/02/2018	-	-	-	-	-	-
05/02/2018	75	0	8	0	0	0
06/02/2018	68	0	9	0	0	0
07/02/2018	78	0	9	0	0	0
08/02/2018	73	0	7	0	0	0
09/02/2018	79	0	7	0	0	0
10/02/2018	71	0	8	0	0	0
11/02/2018	-	-	-	-	-	-
12/02/2018	78	0	9	0	1	0
13/02/2018	71	0	6	0	1	0
14/02/2018	79	0	7	0	1	0
15/02/2018	71	0	9	0	2	0
16/02/2018	75	0	9	0	0	0
17/02/2018	64	0	8	0	0	0
18/02/2018	-	-	-	-	-	-
19/02/2018	72	0	9	0	1	0
20/02/2018	75	0	9	0	1	0
21/02/2018	78	0	9	0	1	0
22/02/2018	68	0	8	0	2	0
23/02/2018	71	0	6	0	0	0
24/02/2018	8	0	8	0	0	0
25/02/2018	-	-	-	-	-	-
26/02/2018	75	0	9	0	1	0
27/02/2018	78	0	11	0	3	0
28/02/2018	75	0	12	0	4	0

	1° sett.		2° sett.		3° sett.	
Battente in cm	LIV.max	Liv.Min	LIV.max	Liv.Min	LIV.max	Liv.Min
01/03/2018	68	0	14	0	5	0
02/03/2018	78	0	15	0	5	0
03/03/2018	75	0	15	0	5	0
04/03/2018	-	-	-	-	-	-
05/03/2018	78	0	16	0	5	0
06/03/2018	71	0	16	0	5	0
07/03/2018	75	0	16	0	5	0
08/03/2018	79	0	9	0	5	0
09/03/2018	76	0	9	0	0	0
10/03/2018	77	0	8	0	0	0
11/03/2018	-	-	-	-	-	-
12/03/2018	73	0	8	0	0	0
13/03/2018	71	0	9	0	0	0
14/03/2018	74	0	9	0	0	0
15/03/2018	78	0	9	0	3	0
16/03/2018	79	0	9	0	3	0
17/03/2018	76	0	9	0	3	0
18/03/2018	-	-	-	-	-	-
19/03/2018	100	0	9	0	3	0
20/03/2018	78	0	9	0	3	0
21/03/2018	79	0	8	0	3	0
22/03/2018	80	0	9	0	3	0
23/03/2018	75	0	9	0	3	0
24/03/2018	78	0	9	0	3	0
25/03/2018	-	-	-	-	-	-
26/03/2018	79	0	9	0	3	0
27/03/2018	75	0	9	0	3	0
28/03/2018	78	0	9	0	4	0
29/03/2018	77	0	9	0	4	0
30/03/2018	73	0	7	0	3	0
31/03/2018	71	0	9	0	3	0

	1° sett.		2° sett.		3° sett.	
Battente in cm	LIV.max	Liv.Min	LIV.max	Liv.Min	LIV.max	Liv.Min
01/04/2018	-	-	-	-	-	-
02/04/2018	-	-	-	-	-	-
03/04/2018	76	0	9	0	3	0
04/04/2018	58	0	9	0	3	
05/04/2018	73	0	9	0	3	0
06/04/2018	79	0	9	0	3	0
07/04/2018	76	0	9	0	3	0
08/04/2018	-	-	-	-	-	-
09/04/2018	80	0	9	0	5	0
10/04/2018	77	0	9	0	4	0
11/04/2018	82	0	9	0	4	0
12/04/2018	79	0	9	0	5	0
13/04/2018	81	0	9	0	4	0
14/04/2018	71	0	9	0	5	0
15/04/2018	-	-	-	-	-	-
16/04/2018	82	0	9	0	5	0
17/04/2018	72	0	9	0	5	0
18/04/2018	78	0	9	0	5	0
19/04/2018	74	0	9	0	5	0
20/04/2018	80	0	7	0	5	0
21/04/2018	72	0	9	0	5	0
22/04/2018	-	-	-	-	-	-
23/04/2018	78	0	9	0	5	0
24/04/2018	76	0	8	0	5	0
25/04/2018	-	-	-	-	-	-
26/04/2018	80	0	7	0	5	0
27/04/2018	74	0	9	0	5	0
28/04/2018	76	0	9	0	5	0
29/04/2018	-	-	-	-	-	-
30/04/2018	78	0	8	0	5	0

Anno 2018	nno 2018 NUOVA DISCARICA DI MATTIE		TTIE	03/01/2018		Press. Atm. I	Mb	925
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
	_	0.4	47		T			
trappola 100	0	0,4	17			0		
trappola 101	0	0,3	17			0		
trappola 102	0	0,4	16,9			0		
trappola 103	0	0,7	16,6			0		
trappola 104	0	0,6	16,6			0		
trappola 105	0	0,8	16,5			0		
trappola 106	0	0,7	16,5			0		
trappola 107	0	1,1	16,3			0		
trappola 108	0	0,2	17,2			0	Ufficio	
trappola 109	0	1	16,3			0		
trappola 110	0	0,8	16,5			0		
trappola 111	0	0,6	16,6			0		
trappola 112	0	3,6	13,7			0		
trappola 113	0	0,7	16,6			0		
trappola 114	0	0,8	16,5			0		
trappola 115	0	1,6	15,7			0		
trappola 116	0	3,3	13,9			0		
				1				

Annotazioni : Analisi ore 9.30 C° 8

Anno 2018	NUOVA DISC	CARICA DI MA	TTIE	10/01/2018		Press. Atm.	Mb	928
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,3	17			0		
trappola 101	0	0,3	17			0		
trappola 102	0	0,5	16,8			0		
trappola 103	0	0,8	16,4			0		
trappola 104	0	0,7	16,5			0		
trappola 105	0	0,7	16,6			0		
trappola 106	0	0,9	16,3			0		
trappola 107	0	0,9	16,4			0		
trappola 108	0	0,2	17,1			0	Ufficio	
trappola 109	0	0,7	16,6			0		
trappola 110	0	0,7	16,7			0		
trappola 111	0	0,8	16,4			0		
trappola 112	0	5,3	11,9			0		
trappola 113	0	0,6	16,7			0		
trappola 114	0	0,5	16,8			0		
trappola 115	0	0,2	17			0		
trappola 116	0	4,5	12,7			0		

Annotazioni : Analisi ore 9.30 C° -1

Anno 2018	018 NUOVA DISCARICA DI MATTIE		17/01/2018		Press. Atm. Mb		
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola 100	0	0,4	16,8			0	
trappola 101	0	0,2	17,1			0	
trappola 102	0	0,3	17			0	
trappola 103	0	0,6	16,6			0	
trappola 104	0	0,6	16,7			0	
trappola 105	0	0,5	16,7			0	
trappola 106	0	0,7	16,6			0	
trappola 107	0	1,2	16,2			0	
trappola 108	0	0,2	17			0	Ufficio
trappola 109	0	0,6	16,6			0	
trappola 110	0	0,5	16,8			0	
trappola 111	0	0,6	16,6			0	
trappola 112	0	3,7	13,5			0	
trappola 113	0	0,5	16,8			0	
trappola 114	0	0,6	16,6			0	
trappola 115	0	0,4	16,8			0	
trappola 116	0	4,6	12,6			0	
		·	,			0	
						0	
						0	

Annotazioni : Analisi ore 12.00 C° 6

Anno 2018	NUOVA DISC	CARICA DI MA	TTIE	25/01/2018		Press. Atm.	Mb	930
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,5	16,7			0		
trappola 101	0	0,3	16,9			0		
trappola 102	0	0,5	16,8			0		
trappola 103	0	0,7	16,6			0		
trappola 104	0	0,8	16,5			0		
trappola 105	0	0,6	16,6			0		
trappola 106	0	0,5	16,7			0		
trappola 107	0	0,9	16,4			0		
trappola 108	0	0,1	17,2			0	Ufficio	
trappola 109	0	0,7	16,5			0		
trappola 110	0	0,6	16,7			0		
trappola 111	0	0,7	16,6			0		
trappola 112	0	1,8	15,4			0		
trappola 113	0	0,7	16,6			0		
trappola 114	0	0,5	16,7			0		
trappola 115	0	0,7	16,6			0		
trappola 116	0	2,3	15,1			0		

Annotazioni : Analisi ore 9.30 C° 7

Anno 2018	NUOVA DISC	ARICA DI MA	TTIE	31/01/2018		Press. Atm.	Mb	933
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,3	17			0		
trappola 101	0	0,4	16,8			0		
trappola 102	0	0,3	16,9			0		
trappola 103	0	0,5	16,8			0		
trappola 104	0	0,6	16,6			0		
trappola 105	0	0,7	16,6			0		
trappola 106	0	0,7	16,7			0		
trappola 107	0	0,8	16,4			0		
trappola 108	0	0,2	17			0	Ufficio	
trappola 109	0	0,9	16,4			0		
trappola 110	0	0,5	16,7			0		
trappola 111	0	0,4	16,9			0		
trappola 112	0	2,3	15,1			0		
trappola 113	0	0,5	16,7			0		
trappola 114	0	0,6	16,7			0		
trappola 115	0	1,1	16,2			0		
trappola 116	0	2,9	14,5	_		0	_	
							_	

Annotazioni : Analisi ore 10.00 C° 5

Anno 2018	no 2018 NUOVA DISCARICA DI MATTIE		TTIE	14/02/2018		Press. Atm.	Mb	936
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,3	17			0		
trappola 101	0	0,3	16,9			0		
trappola 102	0	0,4	17			0		
trappola 103	0	0,6	16,6			0		
trappola 104	0	0,5	16,8			0		
trappola 105	0	0,6	16,7			0		
trappola 106	0	0,5	16,7			0		
trappola 107	0	0,9	16,3			0		
trappola 108	0	0,1	17,2			0	Ufficio	
trappola 109	0	0,7	16,7			0		
trappola 110	0	0,6	16,7			0		
trappola 111	0	0,5	16,8			0		
trappola 112	0	1,2	16			0		
trappola 113	0	0,7	16,6			0		
trappola 114	0	0,7	16,7			0		
trappola 115	0	0,9	16,4			0		
trappola 116	0	1,6	15,7			0		
					Ī			

Annotazioni : Analisi ore 11.00 C° -2

Anno 2018	J.			21/02/2018		Press. Atm. Mb		
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100								
trappola 101								
trappola 102								
trappola 103								
trappola 104								
trappola 105								
trappola 106								
trappola 107								
trappola 108							Ufficio	
trappola 109								
trappola 110								
trappola 111								
trappola 112								
trappola 113								
trappola 114								
trappola 115								
trappola 116								
				_				

Annotazioni : Analisi biogas non effettuato causa neve

Anno 2018	NUOVA DISC	CARICA DI MA	TTIE	28/02/2018		Press. Atm. I	Mb	
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola 100								
trappola 101								
trappola 102								
trappola 103								
trappola 104								
trappola 105								
trappola 106								
trappola 107								
trappola 108							Ufficio	
trappola 109								
trappola 110								
trappola 111								
trappola 112								
trappola 113								
trappola 114								
trappola 115								
trappola 116								

Annotazioni : Analisi biogas non effettuato causa neve

Anno 2018	J.		TTIE	07/03/2018		Press. Atm.	Mb 926
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola 100	0	0,4	16,9			0	
trappola 101	0	0,5	16,7			0	
trappola 102	0	0,3	17,1			0	
trappola 103	0	0,7	16,6			0	
trappola 104	0	0,5	16,8			0	
trappola 105	0	0,8	16,4			0	
trappola 106	0	0,7	16,6			0	
trappola 107	0	1,2	16,1			0	
trappola 108	0	0,2	17,1			0	Ufficio
trappola 109	0	0,8	17,4			0	
trappola 110	0	0,8	17,5			0	
trappola 111	0	0,6	16,6			0	
trappola 112	0	1,2	16			0	
trappola 113	0	0,8	16,5			0	
trappola 114	0	0,5	16,7			0	
trappola 115	0	0,7	16,6			0	_
trappola 116	0	1,9	16,3			0	

Annotazioni : Analisi ore 11.30 C°4

Anno 2018	NUOVA DISC	CARICA DI MA	TTIE	14/03/2018		Press. Atm.	Mb	934
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,3	16,9			0		
trappola 101	0	0,4	16,9			0		
trappola 102	0	0,5	16,7			0		
trappola 103	0	0,6	16,6			0		
trappola 104	0	0,6	16,7			0		
trappola 105	0	0,7	16,4			0		
trappola 106	0	0,5	16,8			0		
trappola 107	0	1	16,2			0		
trappola 108	0	0,1	17,1			0	Ufficio	
trappola 109	0	0,6	16,6			0		
trappola 110	0	0,9	16,4			0		
trappola 111	0	0,7	16,6			0		
trappola 112	0	1,8	15,6			0		
trappola 113	0	0,9	16,3			0		
trappola 114	0	0,7	16,5			0		
trappola 115	0	0,9	16,3			0		
trappola 116	0	2,6	14,7			0		
							1	

Annotazioni : Analisi ore 12.30 C° 9

Anno 2018	Anno 2018 NUOVA DISCARICA DI		TTIE	21/03/2018		Press. Atm.	Mb	939
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,4	16,8			0		
trappola 101	0	0,4	16,9			0		
trappola 102	0	0,3	17			0		
trappola 103	0	0,7	16,5			0		
trappola 104	0	0,6	16,6			0		
trappola 105	0	0,8	16,5			0		
trappola 106	0	0,7	16,5			0		
trappola 107	0	1,3	16,1			0		
trappola 108	0	0,1	17,2			0	Ufficio	
trappola 109	0	0,5	16,8			0		
trappola 110	0	1	16,2			0		
trappola 111	0	0,8	16,5			0		
trappola 112	0	4,6	12,7			0		
trappola 113	0	0,7	16,6			0		
trappola 114	0	0,5	16,7			0		
trappola 115	0	0,3	16,9			0		
trappola 116	0	5	12,2			0		
	Ī				i e		Ī	

Annotazioni : Analisi ore 11.00 C° 5

Anno 2018	NUOVA DISC	CARICA DI MA	TTIE	28/03/2018		Press. Atm.	Mb	934
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi				-				
trappola 100	0	0,6	16,6			0		
trappola 101	0	0,5	16,8			0		
trappola 102	0	0,4	16,9			0		
trappola 103	0	0,6	16,7			0		
trappola 104	0	0,7	16,5			0		
trappola 105	0	0,7	16,6			0		
trappola 106	0	0,5	16,8			0		
trappola 107	0	0,9	16,3			0		
trappola 108	0	0,2	17,1			0	Ufficio	
trappola 109	0	0,6	16,7			0		
trappola 110	0	0,8	16,4			0		
trappola 111	0	0,6	16,7			0		
trappola 112	0	1,4	15,8			0		
trappola 113	0	0,5	16,8			0		
trappola 114	0	0,6	16,6			0		
trappola 115	0	0,7	16,5			0		
trappola 116	0	1,6	15,6			0		

Annotazioni : Analisi ore 10.00 C° 8

Anno 2018	2018 NUOVA DISCARICA DI MATTIE			04/04/2018		Press. Atm. I	Mb	939
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,8	16,4			0		
trappola 101	0	0,7	16,5			0		
trappola 102	0	0,5	16,7			0		
trappola 103	0	0,7	16,6			0		
trappola 104	0	0,6	16,6			0		
trappola 105	0	0,8	16,5			0		
trappola 106	0	0,7	16,5			0		
trappola 107	0	1,3	16,1			0		
trappola 108	0	0,2	17,2			0	Ufficio	
trappola 109	0	0,7	16,6			0		
trappola 110	0	0,6	16,6			0		
trappola 111	0	0,7	16,6			0		
trappola 112	0	2,1	15,1			0		
trappola 113	0	0,6	16,6			0		
trappola 114	0	0,8	16,5			0		
trappola 115	0	0,4	16,8			0		
trappola 116	0	1,6	15,7			0	_	

Annotazioni : Analisi ore 11.00 C° 8

Anno 2018	NUOVA DISC	CARICA DI MAT	TTIE	11/04/2018		Press. Atm.	Mb 933
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola 100	0	0,6	16,6			0	
trappola 101	0	0,5	16,8			0	
trappola 102	0	0,4	16,8			0	
trappola 103	0	0,8	16,3			0	
trappola 104	0	0,7	16,6			0	
trappola 105	0	0,8	16,4			0	
trappola 106	0	0,8	16,3			0	
trappola 107	0	1,6	15,8			0	
trappola 108	0	0,2	17			0	Ufficio
trappola 109	0	0,9	16,4			0	
trappola 110	0	0,7	16,5			0	
trappola 111	0	0,9	16,3			0	
trappola 112	0	3,3	13,9			0	
trappola 113	0	0,7	16,5			0	
trappola 114	0	0,6	16,6			0	
trappola 115	0	0,9	16,4			0	
trappola 116	0	2,9	14,3			0	

Annotazioni : Analisi ore 10.30 C° 6

Anno 2018	2018 NUOVA DISCARICA DI MATTIE					Press. Atm.	Mb 940
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola 100	0	0,3	16,9			0	
trappola 101	0	0,4	16,7			0	
trappola 102	0	0,5	16,7			0	
trappola 103	0	0,7	16,6			0	
trappola 104	0	0,6	16,6			0	
trappola 105	0	0,7	16,5			0	
trappola 106	0	0,4	16,8			0	
trappola 107	0	1,3	15,8			0	
trappola 108	0	0,1	17,1			0	Ufficio
trappola 109	0	0,8	16,3			0	
trappola 110	0	0,6	16,6			0	
trappola 111	0	0,7	16,5			0	
trappola 112	0	2,2	15			0	
trappola 113	0	0,8	16,4			0	
trappola 114	0	0,4	16,7			0	
trappola 115	0	0,7	16,5			0	
trappola 116	0	1,7	15,4			0	

Annotazioni : Analisi ore 12.30 C° 18

Anno 2018	NUOVA DISC	CARICA DI MA	TTIE	26/04/2018		Press. Atm.	Mb	942
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
analisi								
trappola 100	0	0,4	16,8			0		
trappola 101	0	0,4	16,8			0		
trappola 102	0	0,6	16,6			0		
trappola 103	0	0,6	16,5			0		
trappola 104	0	0,8	16,4			0		
trappola 105	0	0,5	16,7			0		
trappola 106	0	0,5	16,8			0		
trappola 107	0	1	16,2			0		
trappola 108	0	0,2	17,1			0	Ufficio	
trappola 109	0	0,8	16,4			0		
trappola 110	0	0,5	16,7			0		
trappola 111	0	0,5	16,8			0		
trappola 112	0	1,6	15,5			0		
trappola 113	0	0,6	16,6			0		
trappola 114	0	0,5	16,6			0		
trappola 115	0	0,6	16,6			0		
trappola 116	0	1,3	15,8			0		

Annotazioni : Analisi ore 10.00 C° 18

Anno 2018	Vecchia disca	arica di Mattie		17/01/2018		Press. Atm. Mb 925	
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola n. 1	0	0,5	16,8			0	
trappola n. 2	0	0,4	16,8			0	
trappola n. 3	0	0,5	16,7			0	
trappola n. 4	0	0,7	16,5			0	
trappola n. 5	0	0,5	16,8			0	
trappola n. 6	0	0,6	16,7			0	
trappola n. 7	0	0,8	16,4			0	
trappola n. 8	0	0,5	16,8			0	
trappola n. 9	0	0,6	16,6			0	
trappola n. 10	0	0,7	16,5			0	
trappola n. 11	0	0,6	16,7			0	
trappola n. 12	0	0,7	16,6			0	
trappola n. 13	0	0,5	16,7			0	
trappola n. 14	0	0,5	16,8			0	
trappola n. 15	0	0,7	16,6			0	
trappola n. 16	0	0,5	16,7			0	
trappola n. 17	0	0,6	16,7			0	
trappola n. 18	0	0,8	16,4			0	
trappola n. 19	0	0,6	16,7			0	
trappola n. 20	0	0,5	16,7			0	

Annotazioni: Analisi ore 10.00 C° 6

Anno 2018	Vecchia disca	arica di Mattie		25/01/2018		Press. Atm. N	Mb 930
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola n. 1	0	0,6	16,6			0	
trappola n. 2	0	0,6	16,6			0	
trappola n. 3	0	0,7	16,7			0	
trappola n. 4	0	0,5	16,8			0	
trappola n. 5	0	0,4	16,8			0	
trappola n. 6	0	0,4	16,9			0	
trappola n. 7	0	0,6	16,7			0	
trappola n. 8	0	0,6	16,7			0	
trappola n. 9	0	0,5	16,8			0	
trappola n. 10	0	0,5	16,7			0	
trappola n. 11	0	0,7	16,6			0	
trappola n. 12	0	0,5	16,8			0	
trappola n. 13	0	0,6	16,7			0	
trappola n. 14	0	0,6	16,7			0	
trappola n. 15	0	0,8	16,4			0	
trappola n. 16	0	0,7	16,5			0	
trappola n. 17	0	0,7	16,6			0	
trappola n. 18	0	1	16,2			0	
trappola n. 19	0	0,5	16,8			0	
trappola n. 20	0	0,7	16,5			0	

Annotazioni: Analisi ore 11.30 C° 7

Anno 2018	Vecchia disca	arica di Mattie		31/01/2018		Press. Atm. I	Press. Atm. Mb 933	
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola n. 1	0	0,4	16,8			0		
trappola n. 2	0	0,5	16,8			0		
trappola n. 3	0	0,5	16,7			0		
trappola n. 4	0	0,3	17			0		
trappola n. 5	0	0,3	17			0		
trappola n. 6	0	0,5	16,8			0		
trappola n. 7	0	0,3	16,9			0		
trappola n. 8	0	0,4	19,9			0		
trappola n. 9	0	0,3	17			0		
trappola n. 10	0	0,3	16,9			0		
trappola n. 11	0	0,5	16,7			0		
trappola n. 12	0	0,4	16,9			0		
trappola n. 13	0	0,4	16,8			0		
trappola n. 14	0	0,5	16,8			0		
trappola n. 15	0	0,7	16,5			0		
trappola n. 16	0	0,5	16,8			0		
trappola n. 17	0	0,9	16,3			0		
trappola n. 18	0	0,8	16,4			0		
trappola n. 19	0	0,3	16,9			0		
trappola n. 20	0	0,6	16,7			0		

Annotazioni: Analisi ore 12.00 C° 5

Anno 2018	Vecchia disca	arica di Mattie		14/02/2018		Press. Atm. Mb 936	
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola n. 1	0	0,5	16,7			0	
trappola n. 2	0	0,5	16,8			0	
trappola n. 3	0	0,6	16,6			0	
trappola n. 4	0	0,5	16,8			0	
trappola n. 5	0	0,6	16,6			0	
trappola n. 6	0	0,4	16,9			0	
trappola n. 7	0	0,4	16,9			0	
trappola n. 8	0	0,5	16,7			0	
trappola n. 9	0	0,5	16,8			0	
trappola n. 10	0	0,6	16,7			0	
trappola n. 11	0	0,6	16,7			0	
trappola n. 12	0	0,7	16,7			0	
trappola n. 13	0	0,5	16,8			0	
trappola n. 14	0	0,7	16,5			0	
trappola n. 15	0	0,8	16,5			0	
trappola n. 16	0	0,6	16,8			0	
trappola n. 17	0	0,7	16,7			0	
trappola n. 18	0	0,7	16,6			0	
trappola n. 19	0	0,7	16,5			0	
trappola n. 20	0	0,6	16,6			0	

Annotazioni: Analisi ore 12.30 C° -2

Anno 2018 Vecchia discarica di Mattie				21/02/2018 Press. Atm. Mb				
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola n. 1	<u> </u>						1	
trappola n. 2								
trappola n. 3								
trappola n. 4								
trappola n. 5								
trappola n. 6								
trappola n. 7								
trappola n. 8								
trappola n. 9								
trappola n. 10								
trappola n. 11								
trappola n. 12								
trappola n. 13								
trappola n. 14								
trappola n. 15								
trappola n. 16								
trappola n. 17								
trappola n. 18								
trappola n. 19								
trappola n. 20								

Annotazioni: Analisi biogas non effettuato per causa neve

Anno 2018	Vecchia discarica di Mattie			28/02/2018		Press. Atm. Mb		
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note	
trappola n. 1								
trappola n. 2								
trappola n. 3		ì						
trappola n. 4								
trappola n. 5								
trappola n. 6								
trappola n. 7								
trappola n. 8								
trappola n. 9								
trappola n. 10								
trappola n. 11								
trappola n. 12								
trappola n. 13								
trappola n. 14								
trappola n. 15								
trappola n. 16								
trappola n. 17								
trappola n. 18								
trappola n. 19								
trappola n. 20								

Annotazioni:

Analisi biogas non effettuato per causa neve

Anno 2018	Vecchia discarica di Mattie			07/03/2018		Press. Atm. Mb 926	
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola n. 1	0	0,6	16,6			0	
trappola n. 2	0	0,7	16,6			0	
trappola n. 3	0	0,8	16,4			0	
trappola n. 4	0	0,7	16,5			0	
trappola n. 5	0	0,7	16,6			0	
trappola n. 6	0	0,6	16,6			0	
trappola n. 7	0	0,7	16,6			0	
trappola n. 8	0	0,8	16,5			0	
trappola n. 9	0	0,7	16,5			0	
trappola n. 10	0	0,4	17			0	
trappola n. 11	0	0,3	17			0	
trappola n. 12	0	0,5	16,8			0	
trappola n. 13	0	0,7	16,6			0	
trappola n. 14	0	0,8	16,5			0	
trappola n. 15	0	0,6	16,7			0	
trappola n. 16	0	0,5	16,7			0	
trappola n. 17	0	0,5	16,8			0	
trappola n. 18	0	0,6	16,6			0	
trappola n. 19	0	0,9	16,3			0	
trappola n. 20	0	0,8	16,5			0	

Annotazioni: Analisi ore 9.30 C° 4

Anno 2018	Vecchia discarica di Mattie			14/03/2018		Press. Atm. Mb 934	
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola n. 1	0	0,5	16,8			0	
trappola n. 2	0	0,5	16,7			0	
trappola n. 3	0	0,6	16,7			0	
trappola n. 4	0	0,6	16,6			0	
trappola n. 5	0	0,5	16,7			0	
trappola n. 6	0	0,4	16,9			0	
trappola n. 7	0	0,6	16,6			0	
trappola n. 8	0	0,7	16,5			0	
trappola n. 9	0	0,6	16,6			0	
trappola n. 10	0	0,5	16,8			0	
trappola n. 11	0	0,5	16,7			0	
trappola n. 12	0	0,7	16,6			0	
trappola n. 13	0	0,8	16,4			0	
trappola n. 14	0	0,8	16,5			0	
trappola n. 15	0	0,7	16,5			0	
trappola n. 16	0	0,5	16,8			0	
trappola n. 17	0	0,7	16,5			0	
trappola n. 18	0	0,9	16,3			0	
trappola n. 19	0	1,2	16,1			0	
trappola n. 20	0	0,6	16,6			0	

Annotazioni: Analisi ore 10.30 C° 9

Anno 2018	Vecchia disca	cchia discarica di Mattie			21/03/2018		Иb 939
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola n. 1	0	0,7	16,5			0	
trappola n. 2	0	0,6	16,7			0	
trappola n. 3	0	0,6	16,6			0	
trappola n. 4	0	0,8	16,4			0	
trappola n. 5	0	0,6	16,7			0	
trappola n. 6	0	0,5	16,7			0	
trappola n. 7	0	0,4	16,9			0	
trappola n. 8	0	0,5	16,7			0	
trappola n. 9	0	0,8	16,5			0	
trappola n. 10	0	0,8	16,4			0	
trappola n. 11	0	0,7	16,6			0	
trappola n. 12	0	0,5	16,8			0	
trappola n. 13	0	0,7	16,5			0	
trappola n. 14	0	0,6	16,7			0	
trappola n. 15	0	0,5	16,7			0	
trappola n. 16	0	0,7	16,6			0	
trappola n. 17	0	0,8	16,4			0	
trappola n. 18	0	1,1	16,3			0	
trappola n. 19	0	0,9	16,3			0	
trappola n. 20	0	0,7	16,5			0	

Annotazioni: Analisi ore 12.30 C° 5

Anno 2018	Vecchia disca	arica di Mattie		28/03/2018		Press. Atm. I	Mb 934
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
	-				-		
trappola n. 1	0	0,5	16,7			0	
trappola n. 2	0	0,5	16,8			0	
trappola n. 3	0	0,4	16,9			0	
trappola n. 4	0	0,6	16,6			0	
trappola n. 5	0	0,5	16,8			0	
trappola n. 6	0	0,7	16,4			0	
trappola n. 7	0	0,6	16,6			0	
trappola n. 8	0	0,6	16,6			0	
trappola n. 9	0	0,7	16,5			0	
trappola n. 10	0	0,6	16,7			0	
trappola n. 11	0	0,5	16,8			0	
trappola n. 12	0	0,4	16,8			0	
trappola n. 13	0	0,5	16,7			0	
trappola n. 14	0	0,5	16,8			0	
trappola n. 15	0	0,7	16,5			0	
trappola n. 16	0	0,6	16,8			0	
trappola n. 17	0	0,6	16,7			0	
trappola n. 18	0	0,9	16,4			0	
trappola n. 19	0	0,7	16,6			0	
trappola n. 20	0	0,6	16,6			0	

Annotazioni: Analisi ore 12.00 C° 8

Anno 2018	Vecchia disca	arica di Mattie		04/04/2018		Press. Atm. I	Mb 939
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola n. 1	0	0,6	16,7			0	
trappola n. 2	0	0,7	16,5			0	
trappola n. 3	0	0,7	16,6			0	
trappola n. 4	0	0,7	16,6			0	
trappola n. 5	0	0,6	16,6			0	
trappola n. 6	0	0,6	16,7			0	
trappola n. 7	0	0,5	16,7			0	
trappola n. 8	0	0,8	16,4			0	
trappola n. 9	0	0,8	16,4			0	
trappola n. 10	0	0,5	16,8			0	
trappola n. 11	0	0,7	16,5			0	
trappola n. 12	0	0,6	16,7			0	
trappola n. 13	0	0,7	16,5			0	
trappola n. 14	0	0,7	16,6			0	
trappola n. 15	0	0,9	16,4			0	
trappola n. 16	0	0,8	16,4			0	
trappola n. 17	0	0,5	16,7			0	
trappola n. 18	0	0,8	16,5			0	
trappola n. 19	0	0,5	16,7			0	
trappola n. 20	0	0,8	16,5			0	

Annotazioni: Analisi ore 12.30 C° 8

Anno 2018	Vecchia disca	arica di Mattie		11/04/2018		Press. Atm. I	Mb 933
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
trappola n. 1	0	0,7	16,6			0	
trappola n. 2	0	0,7	16,6			0	
trappola n. 3	0	0,8	16,4			0	
trappola n. 4	0	0,5	16,7			0	
trappola n. 5	0	0,8	16,3			0	
trappola n. 6	0	0,7	16,5			0	
trappola n. 7	0	0,7	16,6			0	
trappola n. 8	0	0,9	16,3			0	
trappola n. 9	0	0,7	16,5			0	
trappola n. 10	0	0,8	16,4			0	
trappola n. 11	0	0,8	16,4			0	
trappola n. 12	0	0,5	16,8			0	
trappola n. 13	0	0,5	16,7			0	
trappola n. 14	0	0,8	16,5			0	
trappola n. 15	0	1,3	16			0	
trappola n. 16	0	0,9	16,3			0	
trappola n. 17	0	0,7	16,6			0	
trappola n. 18	0	1,1	16,2			0	
trappola n. 19	0	0,7	16,5			0	
trappola n. 20	0	0,7	16,6			0	

Annotazioni: Analisi ore 12.30 C° 6

Anno 2018	Vecchia disca	arica di Mattie		18/04/2018		Press. Atm. N	/lb 940
Punti di	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
analisi							
trappola n. 1	0	0,4	16,8			0	
trappola n. 2	0	0,5	16,8			0	
trappola n. 3	0	0,6	16,6			0	
trappola n. 4	0	0,6	16,6			0	
trappola n. 5	0	0,7	16,5			0	
trappola n. 6	0	0,7	16,6			0	
trappola n. 7	0	0,5	16,7			0	
trappola n. 8	0	0,7	16,6			0	
trappola n. 9	0	0,6	16,6			0	
trappola n. 10	0	0,7	16,5			0	
trappola n. 11	0	0,6	16,6			0	
trappola n. 12	0	0,7	16,5			0	
trappola n. 13	0	0,7	16,6			0	
trappola n. 14	0	0,6	16,6			0	
trappola n. 15	0	1	16,2			0	
trappola n. 16	0	0,7	16,5			0	
trappola n. 17	0	0,7	16,4			0	
trappola n. 18	0	0,8	16,4			0	
trappola n. 19	0	0,6	16,6			0	
trappola n. 20	0	0,5	16,7			0	

Annotazioni: Analisi ore 11.30 C° 18

Anno 2018	Vecchia disca	arica di Mattie		26/04/2018		Press. Atm. N	Лb 942
Punti di analisi	CH4 %	CO2 %	O2 %	Dp mb	variazioni	lel %	note
		-					
trappola n. 1	0	0,6	16,6			0	
trappola n. 2	0	0,6	16,7			0	
trappola n. 3	0	0,7	16,5			0	
trappola n. 4	0	0,5	16,8			0	
trappola n. 5	0	0,5	16,7			0	
trappola n. 6	0	0,6	16,6			0	
trappola n. 7	0	0,6	16,6			0	
trappola n. 8	0	0,5	16,8			0	
trappola n. 9	0	0,4	16,8			0	
trappola n. 10	0	0,5	16,7			0	
trappola n. 11	0	0,4	16,7			0	
trappola n. 12	0	0,8	16,4			0	
trappola n. 13	0	0,6	16,6			0	
trappola n. 14	0	0,6	16,7			0	
trappola n. 15	0	0,8	16,5			0	
trappola n. 16	0	0,9	16,2			0	
trappola n. 17	0	0,6	16,5			0	
trappola n. 18	0	0,7	16,5			0	
trappola n. 19	0	0,7	16,4			0	
trappola n. 20	0	0,6	16,6			0	

Annotazioni: Analisi ore 11.30 C° 18

C2

Dopo:

24,0

CH4

34,8

3,9

 O_2

1,8

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:

Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

SST	7.1	data: 29/0	01/2018		Ora 9:15		Meteo: se	orono	-	SS'	г 9	data: 29/0	01/2018		Ora: 9:45		Meteo: se	rono	
331	. 1	T atm =	7,0		P atm = 9	068	ivieteo. se	51 6110		33	1 4	T atm =	7,0		P atm = 9	968	wieteo. Se	21 6110	
Prima:	CH4	<u>O2</u>	CO2	CO	<u>T°C</u>		<u>D/P</u>		Portata	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata
11111α.	34,2	1,9	30,9	11	4,1		-500		109	11111a.	21,1	3,0	22,1	4	3,6		-400		121
POZZO	CH_4	O2	CO2	СО	Т°С	D/P	D/P	D/P	A, C, P,T	POZZO	CH4	O_2	CO_2	CO	Т°С	D/P	D/P	D/P	A, C, P,T
						prima	finale	pozzo				1				prima	finale	pozzo	
A3 bis	22,8	4,2	21,6	7	3,5	-22	-22	-11	P	В9	29,4	2,5	25,7	3	3,1	-400	-400	-381	P
A2 bis	47,7	1,8	36,6	23	4,8	-20	-20	-12	P	B13	28,4	1,6	21,9	3	3,2	-50	-30	-13	P
A1	29,4	0,7	29,8	10	3,9	-110	-110	-92	p	B6	37,1	2,4	30,6	4	3,8	-25	-25	-11	P
A3	39,7	1,0	34,0	6	4,1	-50	-50	-34	P	B1	40,0	1,7	31,4	3	4,0	-26	-26	-14	P
A4	33,0	0,7	30,6	5	3,9	-400	-400	-382	A	B10 bis	52,8	1,4	39,6	9	4,4	-22	-22	-12	P
A4 bis	57,4	0,6	41,0	11	5,1	-10	-100	-81	P	B5	26,0	4,8	20,7	6	4,8	-50	-25	-12	P
A2	56,1	0,5	41,5	11	5,2	-90	-120	-105	P	B12	29,4	1,5	29,3	8	3,2	-60	-60	-39	P
A5	34,0	0,7	32,3	20	4,5	-380	-380	-362	P	B10	36,0	0,3	29,5	7	3,3	-400	-400	-383	A
										В8	26,6	0,2	27,4	12	3,9	-320	-100	-81	P
A5 bis	30,4	2,9	27,7	6	4,2	-150	-150	-131	P	В7	58,1	0,1	39,7	22	3,7	-60	-80	-62	P
A6	27,5	3,4	26,6	3	3,8	-20	-20	-12	P	B11	36,8	0,1	30,0	10	4,6	-60	-60	-41	P
A7	32,2	1,3	27,4	8	4,0	-400	-400	-382	P	Dopo:	<u>CH4</u>	<u>O2</u>	<u>34,1</u>	<u>CO</u>	<u>T°C</u>		D/P		Portata
A9	58,3	0,6	38,8	9	5,2	-400	-400	-384	A		28,0	3,2	24,3	8	3,6		-380		121
A10	30,0	2,7	21,2	7	3,6	-25	-25	-11	P										
A8	38,2	0,1	28,1	3	4,6	-400	-400	-381	A										
C1	39,0	2,8	30,6	10	4,7	-402	-402	-380	A										

P

Portata

109

 $D/P = Depressione \ (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-11

-25

-25

-420

Portata = portata biogas (m³/h); \mathbf{C} = chiuso ; \mathbf{P} = parzializzato \mathbf{A} = tutto aperto \mathbf{T} = in torcia

20,7

34,1

30,2

6

 $\underline{\text{CO}}$

12

3,8

 $T^{\circ}C$

3,9

FIRMA OPERATORE

asja.biz

<u>CH4</u>

<u>Dopo:</u>

<u>O2</u>

18,2

CO2

0,8

 $\underline{\text{CO}}$

 $\underline{\mathrm{T}^{\circ}\mathrm{C}}$

3,8

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002
Data 22/11/2008
Emissione
Revisione 4

LOT	ГО	data:	29/01/	2018	Ora :	10:10	N T			DDEM	T CW	data:	29/01/2	2018	Ora 1	10:30	N.T		
VECC	HIO	T atm	1 = 7	0	P atm	1 = 968	Metec	e: sere	eno	DREN	1 53	T atm	1 = 7	0	P atm	1 =	Metec	o: sere	eno
<u>Prima:</u>	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a
	0,9	18,2	0,8	0	3,8		0		0		39,5	1,0	30,1	7	4,7		-402		1
						D/P	D/P	D/P	A C							D/P	D/P	D/P	A G
POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozzo	A, C, P,T	POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozzo	A, C, P,T
P1	1,2	17,0	0,9	01	3,	0	0	0	Т	B 3	50,6	0,6	36,9	6	4,8	-20	-200	-190	P
P2	1,0	17,2	0,5	0	2,3	0	0	0	Т	B2	40,6	1,3	30,0	7	4,7	-402	-402	-391	A
D 1	1,4	17,6	0,8	0	3,0	0	0		Т	B 4	38,2	0,6	27,6	8	4,5	-401	-401	-393	A
D2	0,6	18,6	0,4	0	3,1	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>
D 3	0,2	18,1	0,1	0	2,9	0	0		Т		40,5	1,0	30,6	7	4,7		-400		1
D 4	0,2	18,4	0,0	0	2,1	0	0		Т										
D5	0,1	18,4	0,0	0	2,5	0	0		Т										
D6	1,0	18,0	0,5	0	2,4	0	0		Т										
D7	1,1	18,1	0,7	1	2,0	0	0	•	Т										

Portat

<u>a</u>

0

<u>D/P</u>

0

		ANA	LISI E	IOGA	S IMF	PIANTO	DI MA	ATTIE	
DRE		data:	29/01/	2018	Ora 1	1:00	Meteo	o: sere	no
NOR	RD	T atm	$\iota = 7$	0	P atm	1 = 968			
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a
	34,1	4,0	31,2	5	3,6		-380		1
DREN	CII	0	CO	CO	Т°С	D/P	D/P	A, C,	
О	CH_4	O_2	CO_2	СО	1°C	prima finale poz			P,T
1	33,0	4,8	25,4	3	3,6	-4	-4		P
2	34,7	2,0	36,9	4	4,8	-12	-12		P
3	0,0	21,0	0,8	1	2,0	0	0		С
4	0,0	21,0	0,0	0	2,0	0	0		С
5	37,8	0,5	33,8	10	4,3				P
	CH4	<u>O2</u>	CO2	CO	T°C		D/P		Portat
<u>dopo</u>									<u>a</u>
	34,1	4,0	31,2	5	3,6	-380			1

D/P = Depressione (mmH2O);	$CH_4 = Conc \text{ di metano (% in vol);}$	$O_2 = Conc. ossigeno (% in vol);$	CO_2 = conc. di anidride carbonica (% in vol.)	CO= conc. di monossido di car
Portata = portata biogas (m³/h)); $C = chiuso$; $P = parzializzato$	A = tutto aperto T = in torcia	FIRMA	

C2

Dopo:

30,2

CH4

33,7

4,8

 O_2

1,6

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:

Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

		data: 26/0	02/2017		Ora 10:00)	Ora 10:00 Meteo: neve					data: 26/0	02/2017		Ora:8:30				
SST	Γ1	T atm =			P atm = 9		Meteo: n	eve		SS'	Γ2	T atm =			P atm = 9	955	Meteo: ne	eve	
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P		<u>Portata</u>	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>	<u>D/P</u>	
rrima.	31,4	1,6	30,0	5	1,5		-302		97	rrima:	28,1	3,1	23,6	4	1,0		-290		79
POZZO	CH_4	O2	CO2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T	POZZO	CH4	O_2	CO_2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T
A3 bis	29,5	3,7	35,5	4	1,1	-22	-22	-11	P	В9	48,0	1,3	34,4	3	1,8	-290	-290	-272	P
A2 bis	28,2	1,8	25,5	9	0,5	-112	-40	-96	P	B13	52,7	0,6	39,4	6	2,4	-16	-30	-13	P
A1	32,1	0,5	31,5	5	1,4	-73	-73	-51	P	В6	31,4	0,9	24,4	8	1,8	-20	-20	-12	P
A3	41,2	1,5	36,6	4	1,8	-30	-30	-16	P	B1	54,8	0,8	40,8	12	2,2	-20	-20	-17	P
A4	29,7	3,5	27,1	3	1,0	-300	-200	-182	A	B10 bis	30,9	4,8	22,7	7	0,7	-70	-20	-11	P
A4 bis	31,1	2,5	29,8	3	1,1	-250	-250	-232	P	B 5	30,0	1,7	23,8	2	1,0	-30	-30	-12	P
A2	55,6	2,3	42,8	6	2,2	-115	-115	-91	P	B12	40,0	0,9	33,7	11	1,8	-30	-30	-13	P
A5	45,6	0,2	38,8	11	2,1	-26	-50	-33	P	B10	52,3	0,8	36,9	5	2,4	-290	-290	-271	A
										В8	33,1	0,0	30,7	7	1,1	-170	-170	-153	P
A5 bis	36,6	2,7	30,0	4	1,8	-200	-200	-181	P	В7	29,1	0,4	28,8	5	1,0	-170	-50	-32	P
A6	37,8	1,6	34,7	8	1,7	-26	-26	-13	P	B11	38,0	0,7	33,0	3	1,5	-90	-90	-71	P
A7	42,5	0,7	31,9	5	1,9	-260	-300	-181	P	Dopo:	<u>CH4</u>	<u>O2</u>	<u>34,1</u>	<u>CO</u>	<u>T°C</u>		D/P		<u>Portata</u>
A9	51,2	2,6	37,7	4	2,1	-280	-280	-259	P		33,8	2,3	29,1	6	1,5		-250		80
A10	30,1	2,8	23,0	6	1,2	-21	-21	-10	P										
A8	48,1	0,3	31,9	4	1,8	-300	-300	-283	A										
C1	40,0	2,7	31,2	4	1,6	-300	-300	-279	A										

P

Portata

97

 $D/P = Depressione \ (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-12

Portata = portata biogas (m³/h); \mathbf{C} = chiuso ; \mathbf{P} = parzializzato \mathbf{A} = tutto aperto \mathbf{T} = in torcia

26,7

34,1

33,2

6

 $\underline{\text{CO}}$

1,3

 $\mathrm{T}^{\circ}\mathrm{C}$

1,7

-22

-22

D/P

-302

FIRMA OPERATORE

 $asja^*_{\mathsf{.biz}}$

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002

Data 22/11/2008
Emissione
Revisione 4

LOT	ГО	data:	26/02/	2017	Ora 1	.3:00	Meter	o: nev	2	DREN	I SX	data:	26/02/	2017	Ora 1	11:30	Meter	: neve	Δ.
VECC	HIO	T atm	1 = 1	.0	P atm	= 955	WICCC). HCV		DIGEN	1 521	T atm	$\mathbf{a} = 0$	5	P atm	1 =	Wicke). IICV	
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>
	1,2	18,0	0,7	0	1,5		0		0		39,9	1,8	30,9	5	1,7		-320		3
						D/P	D/P	D/P	, a							D/P	D/P	D/P	, a
POZZO	CH_4	O_2	CO_2	СО	T°C	prima	finale	pozzo	A, C, P,T	POZZO	CH_4	O_2	CO_2	СО	T°C	prima	finale	pozzo	A, C, P,T
P1	1,2	16,6	0,8	0	2,0	0	0	0	Т	B 3	35,4	3,2	29,1	6	1,7	-80	-80	-71	P
P2	1,3	17,1	0,9	1	2,3	0	0	0	Т	B2	44,2	2,6	32,7	5	1,,8	-320	-320	-310	A
D1	1,0	17,0	0,7	0	2,1	0	0		Т	B4	38,6	1,2	31,2	4	1,6	-320	-320	-309	A
D2	0,3	18,7	0,2	0	1,9	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a
D 3	0,2	18,7	0,1	0	1,9	0	0		Т		39,9	1,8	30,9	5	1,7		-320		3
D 4	0,3	18,0	0,1	0	2,1	0	0		Т										
D5	0,6	17,4	0,5	0	2,2	0	0		Т										
D6	1,3	17,2	0,8	0	2,1	0	0		Т										
D7	1,9	16,9	1,4	1	2,6	0	0		Т										

Portat

<u>a</u>

0

		ANA	LISI E	IOGA	S IMF	PIANTO	DI MA	ATTIE	
DRE	NI	data:	27/11/	2017	Ora 1	3:50	Motor	: neve	2
NOF	RD	T atm	1 = 0	5	P atm	1 = 955	Metec). neve	9
Prima:	<u>CH4</u>	<u>O2</u>	CO2	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a
	36,9	2,8	31,2	5	2,4		-305		1
DREN	CH_4	O_2	CO_{2}	СО	Т°С				А, С,
O	O11 ₄	O_2	CO_2		10	prima finale poz			P,T
1	47,6	4,5	41,2	6	2,5	-5	-5		P
2	52,1	1,5	48,7	7	2,8	-10	-10		P
3	0,0	21,0	0,2	0	0,2	0	0		С
4	0,0	21,0	0,0	0	0,1	0	0		С
5	40,0	1,3	36,2	6	2,2	 			P
dopo	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a
	36,9	2,8	31,2	5 2,4			-305		1

<u>CO2</u>

0,7

<u>CO</u>

 $\underline{\mathbf{T}^{\mathbf{o}}\mathbf{C}}$

1,5

<u>D/P</u>

0

<u>CH4</u>

1,2

Dopo:

O2

18,0

 $D/P = Depressione (mmH_2O);$ $CH_4 = Conc di metano (% in vol);$ $O_2 = Conc. ossigeno (% in vol);$ $CO_2 = conc. di anidride carbonica (% in vol.)$ CO = conc. di monossido di car $Portata = portata biogas (m^3/h);$ C = chiuso ; P = parzializzato A = tutto aperto T = in torcia

C2

Dopo:

25,2

CH4

32,0

4,9

 O_2

1,5

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:

Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

					One 12:00						-			-					
SST	٦1	data: 27/0	03/2018		Ora 13:0	0	Meteo: se	reno		SS	Г 2	data: 27/0)3/2018		Ora: 13:50	0	Meteo: se	reno	
551		T atm =	16,0		P atm = 9	57	1,1000. 80	.10110		55		T atm =	16,0		P atm = 9	57	1,1000. SC	10110	
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P		Portata
111111a.	31,6	1,6	28,6	9	12,3		-216		114	111111a.	29,5	3,8	24,4	9	12,8		-200		92
POZZO	$\mathrm{CH_4}$	O2	CO2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T	POZZO	CH4	O_2	CO_2	СО	Т°С	D/P prima	D/P finale	D/P pozzo	A, C, P,T
A3 bis	24,6	4,7	18,6	8	12,0	-22	-22	-11	P	В9	41,1	1,4	29,2	6	12,4	-160	-200	-184	P
A2 bis	23,6	1,3	26,5	12	11,8	-40	-35	-18	P	B13	31,1	1,0	25,2	4	11,9	-25	-25	-12	P
A1	35,0	0,6	31,9	12	12,5	-70	-75	-56	P	В6	53,0	2,5	37,2	20	11,4	-80	-80	-59	P
A3	32,5	1,6	30,1	13	11,7	-100	-100	-82	P	B1	23,3	4,1	21,8	11	11,7	-80	-30	-14	P
A4	30,5	1,0	29,0	6	12,2	-180	-180	-173	A	B10 bis	24,6	4,9	19,4	15	12,4	-25	-20	-11	P
A4 bis	47,0	1,2	38,9	14	12,0	-130	-135	-119	P	B5	32,5	4,2	27,0	9	12,7	-27	-20	-11	P
A2	33,3	1,4	30,7	14	12,4	-200	-210	-192	P	B12	33,1	0,7	29,2	12	12,5	-60	-60	-43	P
A5	36,6	0,2	32,6	18	12,7	-213	-210	-195	Р	B10	47,2	0,6	32,8	11	11,8	-200	-208	-189	A
										В8	32,5	1,0	29,1	18	12,0	-180	-180	-162	P
A5 bis	35,0	4,1	26,1	6	11,9	-200	-205	-184	P	В7	30,0	0,1	28,9	18	12,6	-175	-150	-131	P
A6	33,3	1,8	28,5	4	12,3	-24	-26	-11	P	B11	30,8	0,1	28,8	16	12,4	-111	-105	-82	P
A7	41,6	2,5	28,5	15	12,1	-216	-215	-201	A	Dopo:	<u>CH4</u>	<u>O2</u>	34,1	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portata
A9	54,0	2,9	33,7	12	11,7	-216	-215	-199	A		30,0	2,9	25,1	10	12,6		-210		97
A10	23,6	2,7	20,1	8	12,3	-42	-37	-19	P										
A8	54,0	0,9	35,2	7	12,4	-216	-215	-199	A	ļ									
C1	41,5	2,1	31,0	11	12,3	-216	-215	-198	A	Į.									

 $D/P = Depressione \ (mmH_2O); \quad CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \quad O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \quad CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \quad CO = conc. \ di \ monossido \ di \ carbonio \ (ppm) \quad T = temp. \ biogas(^{\circ}C)$

-84

Α

Portata

97

Portata = portata biogas (m³/h); \mathbf{C} = chiuso ; \mathbf{P} = parzializzato \mathbf{A} = tutto aperto \mathbf{T} = in torcia

21,0

34,1

29,6

7

 $\underline{\text{CO}}$

10

11,5

 $T^{\circ}C$

12,4

-216

-110

D/P

-215

FIRMA OPERATORE

asja.biz

 $\underline{\text{CH4}}$

<u>Dopo:</u>

<u>O2</u>

18,1

CO2

0,9

 $\underline{\text{CO}}$

 $\underline{\mathrm{T}^{\circ}\mathrm{C}}$

12,3

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice: MCTR002
Data
22/11/2008
Emissione
Revisione 4

LOT	ГО	data:	27/03/	2018	Ora 1	3:00	Makas			DREN	TOV	data:	27/03/2	2018	Ora 1	14:10	Makas		
VECC	HIO	T atm	1 = 10	3,0	P atm	= 955	Metec	e: sere	eno	DREN	1 51	T atm	1= 16	3,0	P atm	ı =	Metec	: sere	eno
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		$\frac{\underline{Portat}}{\underline{a}}$
·	1,4	18,1	0,9	0	12,3		0		0	,	36,0	2,4	30,0	12	12,7		-220		2
						D/P	D/P	D/P	A C							D/P	D/P	D/P	A C
POZZO	CH_4	O_2	CO_2	CO	т°С	prima	finale	pozzo	A, C, P,T	POZZO	CH_4	O_2	CO_2	CO	т°С	prima	finale	pozzo	A, C, P,T
P1	1,3	17,1	0,7	1	12,3	0	0	0	T	B 3	33,3	4,2	27,0	19	12,6	-28	-26	-15	P
P2	1,1	17,2	0,7	0	11,5	0	0	0	T	B2	46,2	1,5	31,7	10	12,5	-220	-230	-216	A
D1	1,1	18,2	0,5	0	11,2	0	0		Т	B 4	39,6	0,5	29,4	10	12,8	-230	-230	-215	A
D2	0,5	19,1	0,3	0	12,4	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a
D 3	0,1	20,1	0,0	0	12,3	0	0		Т		37,6	2,3	29,9	13	12,9		-220		3
D 4	0,5	18,1	0,1	0	12,5	0	0		Т										
D5	0,4	17,9	0,2	0	10,9	0	0		Т										
D6	1,1	17,8	0,5	0	11,2	0	0		Т										
D7	1,5	17,5	1,1	1	11,4	0	0	•	Т										

Portat

<u>a</u>

0

<u>D/P</u>

0

		ANA	LISI E	IOGA	S IMF	PIANTO	DI MATTIE				
DRE	NI	data:	27/03/	2018	Ora 1	3:30	Meteo: sereno				
NOF	RD	T atm	1 = 10	3,0	P atm	1 = 955	Meteo. sereno				
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a		
	40,0		33,0	8	12,0		-126		1		
DREN	DREN CH4		CO_{2}	СО	Т°С	D/P	D/P	D/P	А, С,		
O	$O \mid ^{CH_4}$		CO_2	CO	1 0	prima	finale	pozzo	P,T		
1	59,6	0,6	39,8	4	11,7	-3	-5		P		
2	47,5	1,4	34,1	5	12,1	-6	-6		P		
3	0,7	20,1	1,3	2	11,8	0	0		C		
4	2,3	16,4	2,2	1	11,6	0	0		C		
5	30,7	0,1	30,6	15	12,0	-6	-5		P		
dopo	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>		
	41,2	0,4	34,4	8	12,4		-215		1		

D/P = Depressione (mmH2O);	$CH_4 = Conc di metano (% in vol);$	$O_2 = Conc. ossige$	eno (% in voi);	CO_2 = conc. di anidride carbonica (% in vol.)	CO= conc. di monossido di car
Portata = portata biogas (m³/h	n); $C = chiuso$; $P = parzializzato$	\mathbf{A} = tutto aperto	$\mathbf{T} = \mathrm{in\ torcia}$	FIRMA	

MODULO DI CONTROLLO **ANALISI BIOGAS** IMPIANTO **Mattie (TO)**

Codice:
Data Emissione
Revisione
Pagina

MCTR002 22/11/2008 4 1 di 3

					1														
SST	<u> </u>	data: 26/0	04/2018		Ora 8:30		Motoo: aa	mono		gg	Т 2	data: 26/0	04/2018		Ora: 10:00	0	Motoo: ac	nano.	
221	. 1	T atm =	18,0		P atm = 9	52	Meteo: se	ereno		33	1 4	T atm =	20,0		P atm = 9	52	Meteo: se	ereno	
D	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	CO	<u>T°C</u>		D/P		<u>Portata</u>	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		D/P		Portata
<u>Prima:</u>	38,6	1,2	32,0	8	18,7		-190		101	<u>Frima:</u>	32,5	3,8	25,2	8	18,3		-181		88
POZZO	$\mathrm{CH_{4}}$	02	CO2	СО	T°C	D/P	D/P	D/P	A, C, P,T	POZZO	CH4	O_2	CO_2	СО	Т°С	D/P	D/P	D/P	A, C, P,T
	-		<u> </u>			prima	finale	pozzo								prima	finale	pozzo	
A3 bis	21,5	4,8	20,3	4	18,0	-40	-25	-11	P	В9	53,0	0,7	35,5	7	18,2	-182	-182	-164	A
A2 bis	40,1	0,9	34,5	32	18,2	-27	-27	-15	P	B13	28,4	3,7	22,1	5	18,2	-75	-30	-12	P
A1	35,6	1,0	32,9	9	17,9	-68	-45	-26	P	В6	44,3	2,5	37,2	8	18,0	-144	-144	-126	P
A3	35,5	1,5	30,9	7	17,9	-80	-80	-59	P	B1	34,6	3,3	36,6	5	17,7	-30	-30	-15	P
A 4	38,5	0,5	32,4	5	18,2	-190	-190	-175	A	B10 bis	31,6	4,7	24,5	19	18,6	-25	-25	-12	Р
A4 bis	50,4	3,3	35,6	10	18,3	-175	-175	-161	Р	B5	35,5	3,1	28,4	6	18,2	-27	-27	-13	P
A2	56,6	0,2	41,5	13	18,0	-170	-190	-172	A	B12	56,8	0,1	37,5	11	18,0	-182	-182	-164	A
A5	44,4	0,3	34,9	15	17,9	-190	-190	-173	A	B10	39,6	0,1	32,0	14	18,1	-40	-40	-21	P
										В8	40,3	0,2	31,3	18	18,1	-170	-170	-151	P
A5 bis	41,2	2,0	31,1	5	18,3	-175	-175	-160	Р	В7	39,2	0,1	30,9	22	18,3	-100	-100	-84	P
A6	44,9	1,2	32,1	4	18,5	-30	-30	-13	Р	B11	40,5	0,4	31,9	7	18,2	-122	-122	-101	P
A7	64,5	0,2	37,7	9	18,0	-190	-190	-171	A	Dopo:	<u>CH4</u>	<u>O2</u>	34,1	<u>CO</u>	<u>T°C</u>		D/P		Portata
A9	58,1	1,5	37,0	7	18,5	-190	-190	-176	A	1	34,0	3,5	25,8	10	18,3		-188		88
A10	19,4	4,0	19,2	3	18,2	-32	-32	-19	P		<u> </u>	1			1				1
A8	62,7	0,4	38,8	6	19,2	-191	-191	-172	A	1									
C1	47,4	0,7	34,6	6	18,2	-192	-192	-173	A	1									
C2	30,8	4,6	24,5	5	18,2	-22	-22	-11	A	1									
D	<u>CH4</u>	<u>O2</u>	<u>34,1</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		<u>Portata</u>	1									
<u>Dopo:</u>	20.9	1.0	91.0	10	100	†	101		101	1									

101

 $D/P = Depressione (mmH_2O);$ $CH_4 = Conc di metano (% in vol);$ $O_2 = Conc. ossigeno (% in vol);$ $CO_2 = conc. di anidride carbonica (% in vol.)$ CO = conc. di monossido di carbonio (ppm) CO = conc. di monossido (ppm) CO = c

-191

Portata = portata biogas (m^3/h); C = chiuso; P = parzializzato A = tutto aperto T = in torcia

31,8

10

18,2

FIRMA OPERATORE

39,2

1,0

IMPIANTO Mattie (TO)

Revisione

LOT	TO	data:	26/04/	2018	Ora 1	10:35	Makai			DREN	TOV	data:	26/04/	2018	Ora :		M-4-	o: sere	
VECC	HIO	T atm	n = 18	8,0	P atm	1 = 952	Metec	o: sere	2110	DREN	ISA	T atm	n = 18	3,0	r atıı	1 –	Metec). sere	HO
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>	Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Porta <u>a</u>
'	1,1	18,0	0,7	0	18,3		0		0		40,2	1,9	34,2	15	18,6		-212		3
						D/P	D/P	D/P	A 0							D/P	D/P	D/P	A ()
POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozzo	A, C, P,T	POZZO	CH_4	O_2	CO_2	СО	Т°С	prima	finale	pozzo	A, C, P,T
P1	1,0	17,2	0,5	0	18,1	0	0	0	Т	B 3	36,2	2,7	25,0	17	18,2	-140	120	109	P
P2	0,9	17,0	0,5	0	18,0	0	0	0	Т	B2	50,1	1,6	46,7	9	18,0	-210	-210	-195	A
D 1	1,0	18,3	0,6	0	18,2	0	0		Т	B 4	41,1	0,7	30,2	10	18,3	-211	-211	-198	A
D2	0,6	18,9	0,4	0	18,2	0	0		Т	Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Porta <u>a</u>
D 3	0,2	19,8	0,1	0	18,3	0	0		Т		40,2	1,9	34,2	15	18,6		-212		3
D 4	0,4	18,5	0,0	0	18,0	0	0		Т										
D5	0,2	18,1	0,1	0	18,2	0	0		Т	1									
D6	1,2	17,9	0,8	1	18,0	0	0		Т	1									
D7	1,2	17,4	0,9	0	17,9	0	0		Т	1									
Dopo:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat <u>a</u>										

		ANA	LISI B	IOGA	S IMP	PIANTO	DI MATTIE				
DRE	NI	data:	26/04/2	2018	Ora 1	1:30	Meteo: sereno				
NOR	RD	T atm	1 = 18	3,0	P atm	= 952	Metec). Sere	110		
Prima:	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	<u>CO</u>	<u>T°C</u>		<u>D/P</u>		Portat a		
	42,6		34,1	11	18,2		-191		1		
DREN CH		O_2	CO ₂	CO	T°C	D/P	D/P	D/P	A, C,		
О	$O CH_4$		CO_2	CO	1.0	prima	finale	pozzo	P,T		
1	51,0	1,2	30,2	8	17,8	-10	-12		P		
2	46,2	1,3	35,6	11	17,0	-9	-9		P		
3	0,1	20,1	1,9	11	18,2	0	0		C		
4	0,4	20,1	2,3	4	18,0	0	0		C		
5	41,0	0,1	37,8	12	17,9	-4	-6		P		
dopo	<u>CH4</u>	<u>O2</u>	<u>CO2</u>	CO	<u>T°C</u>	<u>D/P</u>			Portat a		
	42,7	1,4	35,0	12	18,3		-190		1		

 $D/P = Depressione \ (mmH_2O); \ CH_4 = Conc \ di \ metano \ (\% \ in \ vol); \ O_2 = Conc. \ ossigeno \ (\% \ in \ vol); \ CO_2 = conc. \ di \ anidride \ carbonica \ (\% \ in \ vol.) \ CO = conc. \ di \ monossido \ di \ car$ Portata = portata biogas $(m^3/h); \ C = chiuso; \ P = parzializzato \ A = tutto \ aperto \ T = in \ torcia$ FIRMA

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 2 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: QUALITÀ ARIA AMBIENTE

Id campione cliente: Monitoraggio 48 ore

Punto Campionato: Monte

Id campione interno: 18EF0783-015

Procedura di campionamento: Campionamento effettuato dal Ns. Tecnico secondo quanto previsto dai metodi di

prova - Verbale di campionamento nº EDNBEF23032018

Data campionamento inizio: 21/03/18 15:24

Data campionamento fine: 23/03/18 15:24

Data di ricevimento campione: 23/03/18

Data emissione rapporto di prova: 23/05/18

		J	Risultati		
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Esecuzione Analisi
Metano (CH4)*	mg/Nm3	0,08	-	MPI 052 rev 0 - Analizzatore COV	23-mar-18
Idrocarburi non metanici (NMHC)*	mg/Nm3	0,27	-	MPI 053 rev 0 - Analizzatore COV	23-mar-18
PM 10	μg/m3	48	50 (1 giorno) 40 (anno civile)	UNI EN 12341:2014 - Gravimetrico	05-apr-18
Acido solfidrico (H2S)*	mg/m3	0,0267	-	NIOSH 6013 1994 - IC	11-apr-18
Ammoniaca anidra*	mg/m3	0,0037	-	NIOSH 6015 1994 - UV-VIS	11-apr-18

Pag. 2/2

* = Parametri non accreditati da Accredia

Note:

Il presente rapporto di prova è la somma dei rapporti 18EF0783-001, 18EF0783-002, 18EF0783-003, 18EF0783-004, 18EF0783-005 relativi alla commessa in oggetto.

Note - Non oggetto dell'accreditamento ACCREDIA:

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Il Direttore Tecnico
Dott. Aldo Grasso

Il presente rapporto di prova si riferisce solo al campione sottoposto alle prove. La riproduzione parziale del rapporto di prova deve essere autorizzata per iscritto dal laboratorio. I campioni vengono conservati presso il laboratorio per 4 settimane salvo diverse indicazioni.

Il presente rapporto di prova è composto da n. 2 pagine

Cliente: ACSEL S.p.A.

Indirizzo: Via delle Chiuse, 21 - 10057 S.Ambrogio di Susa TO

Sito di prelievo: Discarica per rifiuti non pericolosi di Mattie - Loc. Camposordo - 10050 Mattie

Tipologia campione: QUALITÀ ARIA AMBIENTE

Id campione cliente: Monitoraggio 48 ore

Punto Campionato: Valle

Id campione interno: 18EF0783-016

Procedura di campionamento: Campionamento effettuato dal Ns. Tecnico secondo quanto previsto dai metodi di

prova - Verbale di campionamento n° EDNBEF23032018

Data campionamento inizio: 21/03/18 16:00

Data campionamento fine: 23/03/18 16:00

Data di ricevimento campione: 23/03/18

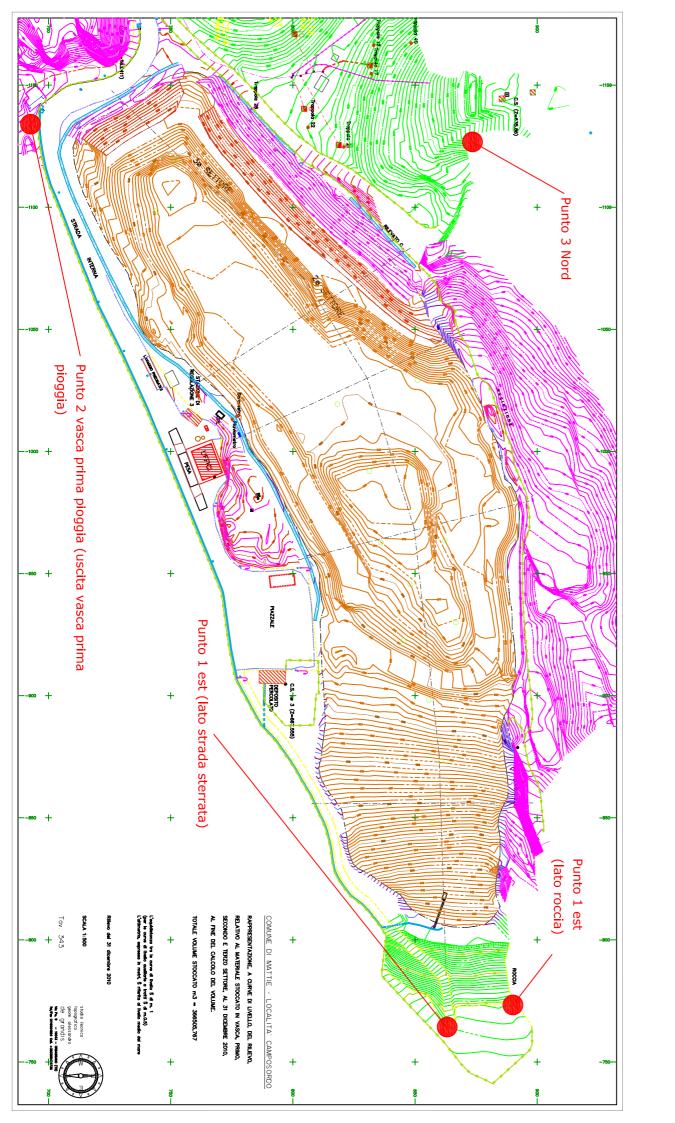
Data emissione rapporto di prova: 23/05/18

]	Risultati		
Caratteristica chimico-fisica	UM	Valore Riscontrato	Valore Limite	Metodo di prova	Data Esecuzione Analisi
Metano (CH4)*	mg/Nm3	0,11	-	MPI 052 rev 0 - Analizzatore COV	23-mar-18
Idrocarburi non metanici (NMHC)*	mg/Nm3	0,55	-	MPI 053 rev 0 - Analizzatore COV	23-mar-18
PM 10	μg/m3	12	50 (1 giorno) 40 (anno civile)	UNI EN 12341:2014 - Gravimetrico	05-apr-18
Acido solfidrico (H2S)*	mg/m3	0,0391	-	NIOSH 6013 1994 - IC	10-apr-18
Ammoniaca anidra*	mg/m3	0,0019	-	NIOSH 6015 1994 - UV-VIS	11-apr-18

Pag. 2/2

* = Parametri non accreditati da Accredia

Note:


Il presente rapporto di prova è la somma dei rapporti 18EF0783-006, 18EF0783-007, 18EF0783-008, 18EF0783-009, 18EF0783-010 relativi alla commessa in oggetto.

Note - Non oggetto dell'accreditamento ACCREDIA:

I valori riscontrati e le relative incertezze di misura sono gestiti, nel confronto con i limiti legislativi, secondo quanto riportato all'interno del Documento di Sistema di Qualità del Laboratorio denominato "D_04 Interpretazione dell'incertezza di misura in riferimento a valori limite legislativi" Rev.0 del 04/04/2011.

Il Direttore Tecnico

Dott. Aldo Grasso

